Fecal Bacteria and General Standard <u>Total Maximum Daily L</u>oad Development For Impaired Streams in the Middle River and Upper South River Watersheds, Augusta County, VA

prepared for.

Commonwealth of Virginia Department of Conservation and Recreation

Division of Soil and Water

April 28, 2004

Submitted by.

MapTech, Inc., 1715 Pratt Drive, Suite 3200, Blacksburg VA 24060 (540)-961-7864

CONTENTS

CONTENTSi
FIGURES
TABLES
EXECUTIVE SUMMARY xxv
ACKNOWLEDGEMENTS
PART I: BACKGROUND AND APPLICABLE STANDARDS
1. INTRODUCTION
1.1 Background1-1
1.2 Applicable Water Quality Standards
1.3 Applicable Criteria for Fecal Coliform Impairment
1.4 Applicable Criterion for Benthic Impairment1-9
PART II: FECAL BACTERIA TMDLS
2. TMDL ENDPOINT AND WATER QUALITY ASSESSMENT
2.1 Selection of a TMDL Endpoint and Critical Condition2-1
2.2 Discussion of In-stream Water Quality
2.2.1 Inventory of Water Quality Monitoring Data2-6
2.2.2 Analysis of Monitoring Data2-15
3. FECAL COLIFORM SOURCE ASSESSMENT
3.1 Assessment of Point Sources
3.2 Assessment of Nonpoint Sources
3.2.1 Private Residential Sewage Treatment
3.2.2 Public Sewage Treatment
3.2.3 Livestock
3.2.4 Biosolids
3.2.5 Wildlife
3.2.6 Pets

4. MODELING PROCEDURE: LINKING THE SOURCES TO THE ENDPOINT	1
4.1 Modeling Framework Selection	1
4.2 Model Setup4-	2
4.3 Source Representation	7
4.3.1 Point Sources	8
4.3.2 Private Residential Sewage Treatment4-	8
4.3.3 Livestock	0
4.3.4 Biosolids	2
4.3.5 Wildlife	3
4.3.6 Pets	4
4.4 Stream Characteristics	5
4.5 Selection of Representative Modeling Period	6
4.6 Sensitivity Analysis	9
4.7 Model Calibration and Validation Processes	1
4.7.1 Hydrologic Calibration and Validation	1
4.7.2 Water Quality Calibration and Validation	9
4.8 Existing Loadings	2
5. ALLOCATION	1
5.1 Incorporation of a Margin of Safety5-	1
5.2 Scenario Development	2
5.2.1 Wasteload Allocations	2
5.2.2 Load Allocations	3
PART III: GENERAL WATER QUALITY (BENTHIC) TMDLS	
6. WATER QUALITY ASSESSMENT 6-	
6.1 Results from the Rapid Bioassessment Protocol II (RBPII) Procedure	1

6.2 Bio	omonitoring Results using the Stream Condition Index (SCI)
7. TMDL REFER	ENDPOINT: STRESSOR IDENTIFICATION AND RENCE WATERSHED SELECTION
7.1 Str	essor Identification7-1
7.1.1	Ambient Water Quality Data7-1
7.1.2	Water-Column Toxicity Tests7-8
7.1.3	Habitat Conditions7-10
7.1.4	Landuse
7.1.5	Stressor Identification Summary
7.2 Ref	ference Watershed Selection
7.2.1	Upper Middle River7-23
7.2.2	Christians Creek
7.2.3	Moffett Creek
8. MODE	ELING PROCEDURE
8.1 Mo	del Framework Selection
8.2 Mo	odel Setup
8.3 Sou	arce Assessment
8.3.1	Channel and Streambank Erosion
8.3.2	Point Sources for TSS Loads
8.4 Sou	arce Representation – Input Requirements
8.4.1	Description of Model Input Parameters
8.4.2	Streamflow and Weather data
8.4.3	Landuse/landcover classes
8.4.4	Sediment Parameters
8.4.5	Pervious and Impervious Surfaces

8.4.7 SCS Runoff Curve
8.4.8 Parameters for Channel and Streambank Erosion
8.5 Point Source TSS Loads
8.6 Stream Characteristics
8.7 Selection of a Representative Modeling Period
8.8 Hydrologic Model Calibration Process
8.9 Existing Conditions
8.9.1 Moffett Creek
8.9.2 Upper Middle River
8.9.3 Christians Creek
9. ALLOCATION
9.1 Sensitivity Analysis9-1
9.2 Moffett Creek Benthic TMDL
9.2.1 Future Growth
9.2.2 Sediment Load Reductions for Moffett Creek Impairment
9.3 Upper Middle River Benthic TMDL
9.3.1 Future Growth
9.3.2 Sediment Load Reductions for Upper Middle River Impairment
9.4 Christians Creek Benthic TMDL
9.4.1 Future Growth
9.4.2 Sediment Load Reductions for Christians Creek Impairment
PART IV: IMPLEMENTATION AND PUBLIC PARTICIPATION
10. IMPLEMENTATION10-1
10.1 Staged Implementation
10.2 Link to Ongoing Restoration Efforts 10-9
10.3 Reasonable Assurance for Implementation

10.3.1 Follow-up Monitoring	
10.3.2 Regulatory Framework	
10.3.3 Stormwater Permits	
10.3.4 Implementation Funding Sources	
10.3.5 Addressing Wildlife Contributions	
11. PUBLIC PARTICIPATION	11-1
REFERENCES	R-1
GLOSSARY	GL-1
APPENDIX A	A-1
APPENDIX B	B-1
APPENDIX C	C-1
APPENDIX D	D-1
APPENDIX E	E-1
APPENDIX F	F-1
APPENDIX G	G-1

FIGURES

Figure 1.1	Location of impaired streams in the Middle River and Upper South River Watersheds	
Figure 1.2	Landuses in the Middle River Watershed	
Figure 2.1	Relationship between fecal coliform concentrations and flow duration interval in the Upper Middle River Impairment. (VADEQ Stations 1BMDL060.48 and 1BMDL061.48)	2-2
Figure 2.2	Relationship between fecal coliform concentrations and flow duration interval in the Lewis Creek impairment (1BLEW002.91)	2-3
Figure 2.3	Relationship between fecal coliform concentrations and flow duration interval in the Moffett Creek impairment (VADEQ station 1BMFT006.20)	2-3
Figure 2.4	Relationship between fecal coliform concentrations and flow duration interval in the Polecat Draft impairment (VADEQ Station 1BPCD001.03).	2-4
Figure 2.5	Relationship between fecal coliform concentrations and flow duration interval in the Lower Middle River impairment (VADEQ Station 1BMDL001.83)	2-4
Figure 2.6	Relationship between fecal coliform concentrations and flow duration interval in the South River impairment (VADEQ Station 1BSTH041.68)	2-5
Figure 2.7	Relationship between fecal coliform concentrations and flow duration interval in the non-impaired section of Middle River (VADEQ Station 1BMDL036.08)	2-5
Figure 2.8	Location of VADEQ water quality monitoring stations in the Middle River watershed.	2-7
Figure 2.9	Location of JMU water quality monitoring stations in the Middle River watershed	2-9
Figure 2.10	Location of stations monitored during a Water Quality Study conducted by the City of Staunton	2-12
Figure 2.11	Location of stations monitored by the Izaak Walton League	2-14
Figure 3.1	Location of VPDES permitted point sources in the Middle and South Rivers watersheds	
Figure 3.2	Sewer service area in the Middle and South River drainages	

Figure 4.1	Subwatersheds delineated for modeling and location of VADEQ water quality monitoring stations and USGS Gaging Stations in the Middle and Upper South River watersheds
Figure 4.2	Example of raccoon habitat layer developed by MapTech in the Middle River watershed4-14
Figure 4.3	Stream profile representation in HSPF
Figure 4.4	Hydrologic calibration and validation periods compared to annual flow and precipitation records
Figure 4.5	Hydrologic calibration and validation periods compared to seasonal flow and precipitation records
Figure 4.6	Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in maximum FC accumulation on land (MON- SQOLIM)
Figure 4.7	Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in the wash-off rate for FC fecal coliform on land surfaces (WSQOP)
Figure 4.8	Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in the concentration of fecal coliform in interflow (IFLW)
Figure 4.9	Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in the in-stream first-order decay rate (FSTDEC)
Figure 4.10	Total loading sensitivity to changes in direct and land-based loads for the Middle River watershed
Figure 4.11	Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in land-based loadings
Figure 4.12	Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in loadings from direct nonpoint sources
Figure 4.13	Calibration results for Middle River for the period 9/30/92 through 9/30/97
Figure 4.14	Calibration results for Middle River for the period 10/1/93 through 9/26/944-35
Figure 4.15	Calibration results for a single storm event for Middle River4-36
Figure 4.16	Validation results for Middle River for the period 9/30/85 through 9/30/904-38

Figure 4.17	Validation results for Middle River for the period 9/29/88 through 9/30/894-39
Figure 4.18	Validation results for a single storm for Middle River4-40
Figure 4.19	Calibration results for South River for the period 9/30/92 through 9/30/974-42
Figure 4.20	Calibration results for South River for the period 9/30/94 through 9/30/954-43
Figure 4.21	Calibration results for a single storm event for South River
Figure 4.22	Validation results for South River for the period 9/30/85 through 9/8/904-46
Figure 4.23	Validation results for South River for the period 9/30/88 through 9/30/894-47
Figure 4.24	Validation results for a single storm for South River
Figure 4.25	Quality Calibration for subwatershed 1 in the Lower Middle River impairment
Figure 4.26	Quality Calibration for subwatershed 14 in the Moffett Creek impairment
Figure 4.27	Quality Calibration for subwatershed 23 in the Lewis Creek impairment
Figure 4.28	Quality Calibration for subwatershed 33 in the Polecat Draft impairment
Figure 4.29	Quality Calibration for subwatershed 36 in the Lower Middle River impairment
Figure 4.30	Quality Calibration for subwatershed 43 in the Upper South River impairment
Figure 4.31	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Calibration period for subwatershed 1 in the Upper Middle River impairment
Figure 4.32	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Calibration period for subwatershed 14 in Moffett Creek impairment
Figure 4.33	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Calibration period for subwatershed 23 in Lewis Creek impairment
Figure 4.34	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Calibration period for subwatershed 33 in the Polecat Draft impairment

Figure 4.35	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Calibration period for subwatershed 36 in the Lower Middle River impairment.	4-63
Figure 4.36	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Calibration period for subwatershed 43 in the Upper South River impairment.	4-64
Figure 4.37	Quality validation for subwatershed 1 in the Upper Middle River impairment.	4-66
Figure 4.38	Quality validation for subwatershed 2 in the Upper Middle River impairment.	4-67
Figure 4.39	Quality validation for subwatershed 7 in the Upper Middle River impairment.	4-68
Figure 4.40	Quality validation for subwatershed 14 in the Moffett Creek impairment.	4-69
Figure 4.41	Quality validation for subwatershed 23 in the Lewis Creek impairment.	4-70
Figure 4.42	Quality validation for subwatershed 33 in the Polecat Draft impairment.	4-71
Figure 4.43	Quality validation for subwatershed 36 in the Lower Middle River impairment.	4-72
Figure 4.44	Quality validation for subwatershed 43 in the Upper South River impairment.	4-73
Figure 4.45	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Validation period for subwatershed 1 in the Upper Middle River impairment.	4-74
Figure 4.46	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Validation period for subwatershed 2 in the Upper Middle River impairment.	4-75
Figure 4.47	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Validation period for subwatershed 7 in the Upper Middle River impairment.	4-76
Figure 4.48	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Validation period for subwatershed 14 in the Moffett Creek impairment	4-77

Figure 4.49	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Validation period for subwatershed 23 in the Lewis Creek impairment	4-78
Figure 4.50	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Validation period for subwatershed 33 in the Polecat Draft impairment	4-79
Figure 4.51	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Validation period for subwatershed 36 in the Lower Middle River impairment	4-80
Figure 4.52	Comparison of minimum and maximum modeled values in a 2- day window, centered on a single observed value. Validation period for subwatershed 43 in the Upper South River impairment.	4-81
Figure 4.53	Existing conditions of <i>E. coli</i> concentrations in subwatershed 10 in the Upper Middle River impairment	4-83
Figure 4.54	Existing conditions of <i>E. coli</i> concentrations in subwatershed 17 in the Moffett Creek impairment.	4-84
Figure 4.55	Existing conditions of <i>E. coli</i> concentrations in subwatershed 25 in the Lewis Creek impairment	4-85
Figure 4.56	Existing conditions of <i>E. coli</i> concentrations in subwatershed 33 in the Polecat Draft impairment	4-86
Figure 4.57	Existing conditions of <i>E. coli</i> concentrations in subwatershed 38 in the Lower Middle River impairment.	4-87
Figure 4.58	Existing conditions of <i>E. coli</i> concentrations in subwatershed 44 in the Upper South River impairment	4-88
Figure 4.59	Existing conditions of <i>E. coli</i> concentrations in subwatershed 10 in the Upper Middle River impairment	4-89
Figure 4.60	Existing conditions of <i>E. coli</i> concentrations in subwatershed 17 in the Moffett Creek impairment.	4-90
Figure 4.61	Existing conditions of <i>E. coli</i> concentrations in subwatershed 25 in the Lewis Creek impairment	4-91
Figure 4.62	Existing conditions of <i>E. coli</i> concentrations in subwatershed 33 in the Polecat Draft impairment.	4-92
Figure 4.63	Existing conditions of <i>E. coli</i> concentrations in subwatershed 38 in the Lower Middle River impairment.	4-93
Figure 4.64	Existing conditions of <i>E. coli</i> concentrations in subwatershed 44 in the Upper South River impairment	4-94
Figure 5.1	Monthly geometric mean <i>E. coli</i> concentrations for the Upper Middle River impairment, under allocated conditions.	5-8

Figure 5.2	Monthly geometric mean <i>E. coli</i> concentrations for the Moffett Creek impairment, under allocated conditions.	5-9
Figure 5.3	Monthly geometric mean <i>E. coli</i> concentrations for the Lewis Creek impairment, under allocated conditions.	5-10
Figure 5.4	Monthly geometric mean <i>E. coli</i> concentrations for the Polecat Draft impairment, under allocated conditions.	5-11
Figure 5.5	Monthly geometric mean <i>E. coli</i> concentrations for the Lower Middle River impairment, under allocated conditions.	5-12
Figure 5.6	Monthly geometric mean <i>E. coli</i> concentrations for the Upper South River impairment, under allocated conditions	5-13
Figure 5.7	Instantaneous <i>E. coli</i> concentrations for the Upper Middle River impairment, under allocated conditions	5-14
Figure 5.8	Instantaneous <i>E. coli</i> concentrations for the Moffett Creek impairment, under allocated conditions	5-15
Figure 5.9	Instantaneous <i>E. coli</i> concentrations for the Lewis Creek impairment, under allocated conditions	5-16
Figure 5.10	Instantaneous <i>E. coli</i> concentrations for the Polecat Draft impairment, under allocated conditions	5-17
Figure 5.11	Instantaneous <i>E. coli</i> concentrations for the Lower Middle River impairment, under allocated conditions	5-18
Figure 5.12	Instantaneous <i>E. coli</i> concentrations for the Upper South River impairment, under allocated conditions	5-19
Figure 6.1	Augusta County benthic impairments and benthic monitoring stations.	6-1
Figure 6.2	Bioassessment scores for benthic impairments in the Middle River Watershed for each impaired segment	6-20
Figure 6.3	Bioassessment scores for benthic impairments in the Middle River Watershed over time.	6-21
Figure 6.4	Results from biological monitoring on Christians Creek	6-23
Figure 6.5	Results from biological monitoring on Moffett Creek	6-24
Figure 7.1	Diurnal DO Study on Middle River	7-5
Figure 7.2	Diurnal DO Study on Christians Creek.	7-5
Figure 7.3	Diurnal DO Study on Moffett Creek.	7-6
Figure 7.4	Results from the habitat assessment for the Upper Middle River	7-11
Figure 7.5	Average results from the habitat assessment for Christians Creek.	7-14
Figure 7.6	Results from the habitat assessment for Moffett Creek	7-16

Figure 7.7	Landuse in the first order stream corridors of Upper Middle River	8
Figure 7.8	Landuse in the first order stream corridors of Christians Creek	9
Figure 7.9	Landuse in the first order stream corridors of Moffett Creek7-1	9
Figure 7.10	Potential reference watersheds7-2	2
Figure 7.11	Upper Middle River and Hays Creek watershed landuse comparison	.3
Figure 7.12	Location of Upper Middle River and Hays Creek watersheds	4
Figure 7.13	Upper Middle River and Hays Creek watershed slope comparison	.5
Figure 7.14	Christians Creek and Opequon Creek watershed landuse comparison7-2	.6
Figure 7.15	Location of Christians Creek and Opequon Creek watershed7-2	7
Figure 7.16	Christians Creek and Opequon Creek watershed slope comparison7-2	8
Figure 7.17	Moffett Creek and Mill Creek watershed landuse comparison	9
Figure 7.18	Location of Moffett Creek and Mill Creek watersheds	0
Figure 7.19	Moffett Creek and Mill Creek watershed slope comparison7-3	1
Figure 8.1	Comparison of Monthly Simulated and Observed Flow for Christians Creek Watershed	7
Figure 8.2	Comparison of Cumulative Monthly Simulated and Observed Flow for Christians Creek	7
Figure 8.3	Comparison of Monthly Simulated and Observed Flow for Opequon Creek Watershed	8
Figure 8.4	Comparison of Cumulative Monthly Simulated and Observed Flow for Opequon Creek	8
Figure 8.5	Comparison of Monthly Simulated and Observed Flow for Hays Creek Watershed	9
Figure 8.6	Comparison of Cumulative Monthly Simulated and Observed Flow for Hays Creek	9
Figure 8.7	Comparison of Monthly Simulated and Observed Flow for Mill Creek Watershed	0
Figure 8.8	Comparison of Cumulative Monthly Simulated and Observed Flow for Mill Creek	0
Figure A.1	Frequency analysis of fecal coliform concentrations at station 1BBAK001.74 in the Middle River impairment for period August 2001 to June 2002	-2

Figure A.2	Frequency analysis of fecal coliform concentrations at station 1BEDN003.67 in the Middle River impairment for period August 2001 to August 2002.	3
Figure A.3	Frequency analysis of fecal coliform concentrations at station 1BMDL060.48 in the Middle River impairment for period April 1999 to August 2002.	4
Figure A.4	Frequency analysis of fecal coliform concentrations at station 1BMDL061.07 in the Middle River impairment for period February 1992 to February 1999A-	5
Figure A.5	Frequency analysis of fecal coliform concentrations at station 1BMDL036.08 in the Middle River impairment for period January 1990 to July 2002.	6
Figure A.6	Frequency analysis of fecal coliform concentrations at station 1BLEW002.91 in the Middle River impairment for period September 1991 to July 2002	7
Figure A.7	Frequency analysis of fecal coliform concentrations at station 1BEKR000.25 in the Middle River impairment for period August 2001 to July 2002.	8
Figure A.8	Frequency analysis of fecal coliform concentrations at station 1BMFT001.43 in the Middle River impairment for the period August 2001 to July 2002.	9
Figure A.9	Frequency analysis of fecal coliform concentrations at station 1BMFT006.20 in the Middle River impairment for the period February 1992 to June 2001	0
Figure A.10	Frequency analysis of fecal coliform concentrations at station 1BPCD001.03 in the Middle River impairment for period June 1993 to October 2000	1
Figure A.11	Frequency analysis of fecal coliform concentrations at station 1BMDL001.83 in the Middle River impairment for period January 1990 to July 2002.	2
Figure A.12	Frequency analysis of fecal coliform concentrations at station 1BPNE000.04 in the Middle River impairment for period August 2001 to July 2002.	3
Figure A.13	Frequency analysis of fecal coliform concentrations at station 1BSTH041.68 in the Middle River impairment for period July 1991 to July 2002	
Figure A.14	Frequency analysis of <i>E. Coli</i> concentrations at station 1BLEW002.91 in the Middle River impairment for period January 2000 to July 2002.	

Figure A.15	Frequency	analysis	of E.	<i>coli</i> co	ncentrations	at	station	
	1BMDL060	.48 in th	e Middle	River	impairment	for	period	
	January 200	0 to Augu	st 2002					. A-16

TABLES

Table ES.1	Final allocations in percentages in loading from existing conditions for Upper Middle River Watershedxxxiii
Table ES.2	Required sediment reductions for Christians Creek Impairmentxxxiv
Table ES.3	TMDL reductions for the Christians Creek Impairment xxxv
Table ES.4	Required sediment reductions for Moffett Creek Impairment xxxv
Table ES.5	TMDL reductions for the Moffett Creek Impairmentxxxvi
Table ES.6	Required sediment reductions for Upper Middle River Impairmentxxxvi
Table ES.7	TMDL reductions for Upper Middle River Impairment xxxvii
Table 1.1	Area affecting the impairment and contributing landuses1-6
Table 1.2	Components of the RBP Assessment
Table 2.1	Summary of fecal coliform monitoring conducted by VADEQ for period April 1973 through June 2001
Table 2.2	Summary of water quality sampling conducted by James Madison University. Fecal coliform concentrations (cfu/100 ml)2-10
Table 2.3	Summary of water quality sampling conducted by the City of Staunton
Table 2.4	Summary of fecal coliform monitoring conducted by the Izaak Walton League
Table 2.5	Summary of the Mood Median Test on mean monthly precipitation at Station 448062
Table 2.6	Summary of the Mood Median Test on mean monthly flow at USGS Station 01625000
Table 2.7	Summary of trend analysis on fecal coliform (cfu/100 ml)
Table 2.8	Summary of Mood Median Test on mean monthly fecal coliform at 1BLEW002.91 on Lewis Creek
Table 2.9	Summary of Mood Median Test on mean monthly fecal coliform at 1BMDL001.83 on Middle River2-21
Table 2.10	Summary of Mood Median Test on mean monthly fecal coliform at 1BMDL036.08 on Middle River2-22
Table 2.11	Summary of Mood Median Test on mean monthly fecal coliform at 1BSTH041.68 on South River2-22
Table 3.1	Permitted Point Sources in the Middle and South River Watersheds

Table 3.1	Permitted Point Sources in the Middle and South River Watersheds (cont.)	
Table 3.1	Permitted Point Sources in the Middle and South River Watersheds (cont.)	
Table 3.2	Estimated human populations by watershed (2003) ¹	
Table 3.3	Estimated human populations by watershed (2003) ¹ , adjusted based on sewer service area.	
Table 3.4	Estimated livestock populations in the Middle and South River watersheds.	
Table 3.5	Estimated poultry populations in the Middle and South River watersheds (total birds per year).	3-11
Table 3.6	Average fecal coliform densities and waste loads associated with livestock and poultry.	3-11
Table 3.7	Estimated average percentage of collected livestock waste applied throughout year	3-12
Table 3.8	Estimated average time dairy milking cows spend in different areas per day	3-13
Table 3.9	Estimated average time dry cows and replacement heifers spend in different areas per day	3-13
Table 3.10	Estimated average time beef cows spend in different areas per day.	3-14
Table 3.11	Sources of biosolids spread (dry tons) in the Middle and South River watersheds.	3-14
Table 3.12	Acreages permitted for biosolids applications and actual applications by impairment area in the Middle and South River watersheds.	
Table 3.13	Wildlife population density	
Table 3.14	Estimated wildlife populations in the Middle and South River watersheds.	
Table 3.15	Wildlife fecal production rates and habitat.	
Table 3.16	Average fecal coliform densities and estimated percentage of fecal matter directly deposited in stream for wildlife	3-17
Table 3.17	Domestic animal population density, waste load, and fecal coliform density	3-18
Table 3.18	Estimated domestic animal populations in the Middle and South Rivers watersheds	3-18
Table 4.1	VADEQ monitoring stations and corresponding reaches in the Middle and Upper South River watersheds	4-4

Table 4.2	Consolidation of MRLC landuse categories for the Middle and South River watersheds.	4-5
Table 4.3	Spatial distribution of landuse types in the Middle and Upper South River drainage areas	4-6
Table 4.4	Estimated failing septic systems (2003)	4-9
Table 4.5	Example of an "F-table" calculated for the HSPF model	4-16
Table 4.6	Comparison of modeled period to historical records	4-17
Table 4.7	Base parameter values used to determine hydrologic model response.	4-21
Table 4.8	Sensitivity analysis results for hydrologic model parameters	
Table 4.9	Base parameter values used to determine water quality model response.	4-23
Table 4.10	Percent change in average monthly FC geometric mean for the years 1993-1998.	4-23
Table 4.11	Model parameters utilized for hydrologic calibration	
Table 4.12	Hydrology calibration criteria and model performance for Middle River for the period 9/30/92 through 9/30/97	4-33
Table 4.13	Hydrology validation criteria and model performance for Middle River period 9/30/85 through 9/8/90	4-37
Table 4.14	Hydrology calibration criteria and model performance for South River for the period 9/30/93 through 9/30/97.	4-41
Table 4.15	Hydrology validation criteria and model performance for South River for the period 9/30/85 through 9/8/90.	4-45
Table 4.16	Model parameters utilized for water quality calibration.	
Table 4.17	Results of analyses on calibration runs.	4-58
Table 4.18	Results of analyses on validation runs.	
Table 5.1	Allocation scenarios for bacterial concentration with current loading estimates in the Upper Middle River impairment.	5-5
Table 5.2	Allocation scenarios for bacterial concentration with current loading estimates in the Moffett Creek impairment	5-5
Table 5.3	Allocation scenarios for bacterial concentration with current loading estimates in the Lewis Creek impairment.	5-5
Table 5.4	Allocation scenarios for bacterial concentration with current loading estimates in the Polecat Draft impairment.	5-6
Table 5.5	Allocation scenarios for bacterial concentration with current loading estimates in the Lower Middle River impairment	

Table 5.6	Allocation scenarios for bacterial concentration with current loading estimates in the Upper South River impairment	5-6
Table 5.7	Land-based and Direct nonpoint source load reductions in the Upper Middle River impairment for final allocation.	
Table 5.8	Land-based and Direct nonpoint source load reductions in the Moffett Creek impairment for final allocation	
Table 5.9	Land-based and Direct nonpoint source load reductions in the Lewis Creek impairment for final allocation.	
Table 5.10	Land-based and Direct nonpoint source load reductions in the Polecat Draft impairment for final allocation.	5-21
Table 5.11	Land-based and Direct nonpoint source load reductions in the Lower Middle River impairment for final allocation	5-22
Table 5.12	Land-based and Direct nonpoint source load reductions in the Upper South River impairment for final allocation.	
Table 5.13	Average annual loads (cfu/year) modeled after TMDL allocation in the Upper Middle River, Moffett Creek, Lewis Creek, Polecat Draft, and Lower Middle River watersheds	5-23
Table 6.1	Biological monitoring conducted by VADEQ on 10/20/94	6-2
Table 6.2	Biological monitoring conducted by VADEQ on 5/1/95	6-3
Table 6.3	Biological monitoring conducted by VADEQ on 10/11/95	6-3
Table 6.4	Biological monitoring conducted by VADEQ on 10/6/98	6-4
Table 6.5	Biological monitoring conducted by VADEQ on 5/24/99	6-4
Table 6.6	Biological monitoring conducted by VADEQ on 10/26/99	6-5
Table 6.7	Biological monitoring conducted by VADEQ on 4/11/00	6-5
Table 6.8	Biological monitoring conducted by VADEQ on 10/16/01	6-6
Table 6.9	Biological monitoring conducted by VADEQ on 5/28/02	6-6
Table 6.10	Biological monitoring conducted by VADEQ on 11/1/02	6-7
Table 6.11	Biological monitoring conducted by VADEQ on 6/1/95	6-7
Table 6.12	Biological monitoring conducted by VADEQ on 6/1/95	6-8
Table 6.13	Biological monitoring conducted by VADEQ on 5/28/02	6-8
Table 6.14	Biological monitoring conducted by VADEQ on 5/28/02	6-9
Table 6.15	Biological monitoring conducted by VADEQ on 10/16/00	6-9
Table 6.16	Biological monitoring conducted by VADEQ on 9/24/01	6-10
Table 6.17	Biological monitoring conducted by VADEQ on 10/20/94	6-10
Table 6.18	Biological monitoring conducted by VADEQ on 5/10/95	6-11

Table 6.19	Biological monitoring conducted by VADEQ on 10/10/95	6-11
Table 6.20	Biological monitoring conducted by VADEQ on 5/8/97	6-12
Table 6.21	Biological monitoring conducted by VADEQ on 10/14/97	6-12
Table 6.22	Biological monitoring conducted by VADEQ on 10/6/98	6-13
Table 6.23	Biological monitoring conducted by VADEQ on 5/7/02	6-13
Table 6.24	Biological monitoring conducted by VADEQ on 11/1/02	6-14
Table 6.25	Biological monitoring conducted by VADEQ on 10/20/94	6-14
Table 6.26	Biological monitoring conducted by VADEQ on 5/16/95	6-15
Table 6.27	Biological monitoring conducted by VADEQ on 10/10/95	6-15
Table 6.28	Biological monitoring conducted by VADEQ on 6/3/96	6-16
Table 6.29	Biological monitoring conducted by VADEQ on 5/5/97	6-16
Table 6.30	Biological monitoring conducted by VADEQ on 9/18/97	6-17
Table 6.31	Biological monitoring conducted by VADEQ on 10/26/99	6-17
Table 6.32	Biological monitoring conducted by VADEQ on 4/11/00	6-18
Table 6.33	Biological monitoring conducted by VADEQ on 10/16/00	6-18
Table 6.34	Biological monitoring conducted by VADEQ on 5/28/02	6-19
Table 6.35	Biological monitoring conducted by VADEQ on 11/1/02	6-19
Table 6.36	Summary of benthic data from Christians Creek.	6-22
Table 6.37	Summary of benthic data from Moffett Creek.	6-23
Table 6.38	Summary of benthic data from the Upper Middle River.	6-24
Table 7.1	Summary data for temperature and DO.	7-2
Table 7.2	Summary data for specific conductance and pH	7-2
Table 7.3	Summary data for alkalinity	7-3
Table 7.4	Summary data for hardness	7-3
Table 7.5	Summary data for nitrate	7-4
Table 7.6	Summary data for TP	7-4
Table 7.7	Summary data for TSS.	7-4
Table 7.8	Summary data for ammonia	7-6
Table 7.9	Metals detected in stream sediment samples	7-7
Table 7.10	Results from Chronic Toxicity Tests with Fathead Minnows	7-9
Table 7.11	Upper Middle River and Hays Creek watershed landuse comparison.	7-23

Table 7.12	Christians Creek and Opequon Creek watershed landuse comparison7-26
Table 7.13	Moffett Creek and Mill Creek watershed landuse comparison7-29
Table 8.1	USGS gaging stations used in GWLF models
Table 8.2	Weather station used in GWLF models
Table 8.3	Landuse-Categories for TMDL Analysis
Table 8.4	Landuse distributions for impaired and reference watersheds
Table 8.5	VPDES point source facilities and permitted TSS load8-14
Table 8.6	GWLF flow calibration statistics
Table 8.7	Existing sediment loads for Moffett Creek and reference watershed Mill Creek
Table 8.8	Existing sediment loads for Upper Middle River and Reference watershed Hays Creek
Table 8.9	Existing sediment loads from first-order stream corridors for Christians Creek and Reference watershed Opequon Creek
Table 9.1	Base watershed parameter values used to determine hydrologic and sediment response
Table 9.2	Sensitivity of model response to change in selected parameters
Table 9.3	TMDL for Moffett Creek Impairment9-4
Table 9.4	Required sediment reductions for Moffett Creek Impairment9-5
Table 9.5	TMDL sediment reductions for Moffett Creek Impairment9-6
Table 9.6	TMDL for Upper Middle River Impairment9-6
Table 9.7	Required sediment reductions for Upper Middle River Impairment
Table 9.8	TMDL sediment reductions for Upper Middle River Impairment9-8
Table 9.9	TMDL for Christians Creek Impairment
Table 9.10	Projected future sediment loads for Christians Creek Impairment9-10
Table 9.11	Required sediment reductions for Christians Creek Impairment9-11
Table 9.12	TMDL sediment load reductions for Christians Creek Impairment
Table 10.1	Reduction percentages for the Stage I implementation10-3
Table 10.2	Land-based and Direct nonpoint source load reductions in the Upper Middle River impairment for Stage I allocation
Table 10.3	Land-based and Direct nonpoint source load reductions in the Moffett Creek impairment for Stage I allocation10-4

Table 10.4	Land-based and Direct nonpoint source load reductions in the Lewis Creek impairment for Stage I allocation	10-5
Table 10.5	Land-based and Direct nonpoint source load reductions in the Polecat Draft impairment for Stage I allocation	10-5
Table 10.6	Land-based and Direct nonpoint source load reductions in the Lower Middle River impairment for Stage I allocation	10-6
Table 10.7	Land-based and Direct nonpoint source load reductions in the Upper South River impairment for Stage I allocation	10-6
Table 10.8	Management scenarios with sediment reductions for Moffett Creek Impairment.	10-7
Table 10.9	Management scenarios with sediment reductions for Upper Middle River Impairment.	10-8
Table 10.10	Management scenarios with sediment reductions for Christians Creek Impairment-Stream Corridor.	10-9
Table 11.1	Public participation during TMDL development for the Middle River watershed.	11-2
Table B.1	Current conditions (2003) of land applied fecal coliform load for the Upper Middle River impairment (Subsheds 1-10)	B-2
Table B.1	Current conditions (2003) of land applied fecal coliform load for the Upper Middle River impairment (Subsheds 1-10) (Continued)	B-2
Table B.2	Current conditions (2003) of land applied fecal coliform load for the Jennings Branch watershed (non-impaired) (Subsheds 11-12)	B-3
Table B.2	Current conditions (2003) of land applied fecal coliform load for the Jennings Branch watershed (non-impaired) (Subsheds 11-12) (Continued)	B-3
Table B.3	Current conditions (2003) of land applied fecal coliform load for the Moffett Creek impairment (Subsheds 13-17)	B-4
Table B.3	Current conditions (2003) of land applied fecal coliform load for the Moffett Creek impairment (Subsheds 13-17) (Continued)	B-4
Table B.4	Current conditions (2003) of land applied fecal coliform load for the Lewis Creek impairment (Subsheds 18-25)	B-5
Table B.4	Current conditions (2003) of land applied fecal coliform load for the Lewis Creek impairment (Subsheds 18-25) (Continued)	B-5
Table B.5	Current conditions (2003) of land applied fecal coliform load for the Middle River watershed (non-impaired) (Subsheds 26-32)	B-6
Table B.5	Current conditions (2003) of land applied fecal coliform load for the Middle River watershed (non-impaired) (Subsheds 26-32) (Continued)	B-6

Table B.6	Current conditions (2003) of land applied fecal coliform load for the Polecat Draft impairment (Subshed 33)	B-7
Table B.6	Current conditions (2003) of land applied fecal coliform load for the Polecat Draft impairment (Subshed 33) (Continued)	B-7
Table B.7	Current conditions (2003) of land applied fecal coliform load for the Lower Middle River impairment (Subsheds 34-38)	B-8
Table B.7	Current conditions (2003) of land applied fecal coliform load for the Lower Middle River impairment (Subsheds 34-38) (Continued)	B-8
Table B.8	Current conditions (2003) of land applied fecal coliform load for the South River impairment (Subsheds 39-44).	B-9
Table B.8	Current conditions (2003) of land applied fecal coliform load for the South River impairment (Subsheds 39-44) (Continued)	B-9
Table B.9	Monthly, directly deposited fecal coliform loads in each reach of the Upper Middle River impairment (subsheds 1-10)	B-10
Table B.9	Monthly, directly deposited fecal coliform loads in each reach of the Upper Middle River impairment (subsheds 1-10) cont	B-11
Table B.10	Monthly, directly deposited fecal coliform loads in each reach of the Jennings Branch watershed (non-impaired) (subsheds 11-12)	B-12
Table B.11	Monthly, directly deposited fecal coliform loads in each reach of the Moffett Creek impairment (subsheds 13-17).	B-13
Table B.12	Monthly, directly deposited fecal coliform loads in each reach of the Lewis Creek impairment (subsheds 18-25)	B-14
Table B.12	Monthly, directly deposited fecal coliform loads in each reach of the Lewis Creek impairment (subsheds 18-25) cont	B-15
Table B.13	Monthly, directly deposited fecal coliform loads in each reach of the Middle River watershed (non-impaired) (subsheds 26-32)	B-16
Table B.13	Monthly, directly deposited fecal coliform loads in each reach of the Middle River watershed (non-impaired) (subsheds 26-32) cont.	B-17
Table B.14	Monthly, directly deposited fecal coliform loads in each reach of the Polecat Draft impairment (subshed 33)	B-17
Table B.15	Monthly, directly deposited fecal coliform loads in each reach of the Lower Middle River impairment (subsheds 34-38).	B-18
Table B.16	Monthly, directly deposited fecal coliform loads in each reach of the South River impairment (subsheds 39-44)	B-19
Table B.17	Existing annual loads from land-based sources for the Upper Middle River impairment (Subsheds 1-10)	B-20

Table B.18	Existing annual loads from land-based sources for Jennings Branch watershed (non-impaired) (Subsheds 11-12)B-21
Table B.19	Existing annual loads from land-based sources for the Moffett Creek impairment (Subsheds 13-17)B-22
Table B.20	Existing annual loads from land-based sources for the Lewis Creek impairment (subsheds 18-25)
Table B.21	Existing annual loads from land-based sources for the Middle River watershed (non-impaired) (Subsheds 26-32)
Table B.22	Existing annual loads from land-based sources for the Polecat Draft impairment (subshed 33)
Table B.23	Existing annual loads from land-based sources for the Lower Middle River impairment (subsheds 34-38)
Table B.24	Existing annual loads from land-based sources for the South River impairment (subsheds 39-44)
Table B.25	Existing annual loads from direct-deposition sources for the Upper Middle River impairment (subwatersheds 1-10)B-28
Table B.26	Existing annual loads from direct-deposition sources for the Jennings Branch watershed (non-impaired) (subwatersheds 11- 12)
Table B.27	Existing annual loads from direct-deposition sources for the Moffett Creek impairment (subwatersheds 13-17)
Table B.28	Existing annual loads from direct-deposition sources for the Lewis Creek impairment (subwatersheds 18-25)
Table B.29	Existing annual loads from direct-deposition sources for the Middle River watershed (non-impaired) (subwatersheds 26-32)B-32
Table B.30	Existing annual loads from direct-deposition sources for the Polecat Draft impairment (subwatershed 33)B-33
Table B.31	Existing annual loads from direct-deposition sources for the Lower Middle River impairment (subwatersheds 34-38)
Table B.32	Existing annual loads from direct-deposition sources for the South River impairment (subwatersheds 39-44)B-35
Table D.1	Moffett Creek and Reference Watershed Mill Creek GWLF Watershed Parameters for Existing Conditions D-2
Table D.2	Moffett Creek and Reference Watershed Mill Creek GWLF Monthly Evaporation Cover Coefficients for Existing ConditionsD-2
Table D.3	Moffett Creek and Reference Watershed Mill Creek GWLF Landuse Parameters for Existing ConditionsD-2
Table D.4	Area Adjustment for Moffett Creek TMDL Reference Watershed (ha) Mill CreekD-3

Table D.5	GWLF Watershed Parameters for Upper Middle River and Reference Watershed Hays Creek Existing ConditionsD-3
Table D.6	GWLF Monthly Evaporation Cover Coefficients Upper Middle River and Reference Watershed for Existing ConditionsD-4
Table D.7	Upper Middle River and Reference Watershed Hays Creek GWLF Landuse Parameters for Existing ConditionsD-4
Table D.8	Area Adjustment for Upper Middle River TMDL Reference Watershed (ha) Hays CreekD-4
Table D.9	Christians Creek and Reference Watershed Opequon Creek GWLF Watershed Parameters for Existing Conditions D-5
Table D.10	Christians Creek and Reference Watershed Opequon GWLF Monthly Evaporation Cover Coefficients for Existing ConditionsD-5
Table D.11	Christians Creek and Reference Watershed Opequon Creek GWLF Landuse Parameters for Existing ConditionsD-5
Table D.12	Area Adjustment for Christians Creek TMDL Reference Watersheds Opequon CreekD-6
Table E.1	Best Management Practices Listed by ImpairmentE-2
Table E.1	Best Management Practices Listed by Impairment (cont.)E-3
Table E.1	Best Management Practices Listed by Impairment (cont.)E-4
Table E.1	Best Management Practices Listed by Impairment (cont.)E-5
Table G.1	Average annual loads (cfu/year) modeled after TMDL allocation in the Upper Middle River, Moffett Creek, Lewis Creek, Polecat Draft, and Lower Middle River watersheds with permitted point source loads increased five times

EXECUTIVE SUMMARY

Background and Applicable Standards

Middle River was placed on the Commonwealth of Virginia's 1996 Section 303(d) TMDL Priority List because of violations of the fecal coliform bacteria water quality standard and the General Standard (benthic). The focus of these TMDLs is on the fecal coliform and benthic impairments in Middle River and Upper South River watersheds. Based on exceedances of the fecal coliform standard recorded at Virginia Department of Environmental Quality (VADEQ) monitoring stations located in the Upper Middle River, Lewis Creek, Moffett Creek, Polecat Draft, Lower Middle River and Upper South River, these streams do not support primary contact recreation (e.g., swimming). All of these segments were initially placed on the Virginia 1996 303(d) TMDL Priority List and have remained on the 1998 and 2002 303(d) lists. The new applicable state standard (Virginia Water Quality Standard 9 VAC 25-260-170) specifies that the number of fecal coliform bacteria shall not exceed a maximum allowable level of 400 colony-forming units (cfu) per 100 milliliters (ml). Alternatively, if data is available, the geometric mean of two or more observations taken in a calendar month should not exceed 200-cfu/100 ml. The United States Environmental Protection Agency (EPA) directed that the state develop a water quality standard for E. coli bacteria to eventually replace the fecal coliform standard. This new standard specifies that the number of E. coli bacteria shall not exceed allowable of a maximum level 235-cfu /100 ml (Virginia Water Quality Standard 9 VAC 25-260-170). In addition, if data is available, the geometric mean of two or more observations taken in a calendar month should not exceed 126-cfu/100 ml.

The General Standard is implemented by VADEQ through application of the Rapid Bioassessment Protocol II (RBP). Using the RBP, the health of the benthic macroinvertebrate community is typically assessed through measurement of 8 biometrics that evaluate different aspects of the community's overall health. Surveys of the benthic macroinvertebrate community performed by VADEQ are assessed at the family taxonomic level. Each biometric measured at a target station is compared to the same biometric measured at a reference (non-impaired) station to determine each biometric score. These scores are then summed and used to determine the overall bioassessment (*e.g.*, non-impaired, moderately impaired, or severely impaired). Using this methodology, Christians Creek, Lewis Creek, Moffett Creek, and Upper Middle River stream segments were rated as non-impaired to slightly impaired, moderate to severely impaired, moderately impaired, and moderately impaired, respectively.

TMDL Endpoint and Water Quality Assessment

Fecal Coliform

Potential sources of fecal coliform include both point source and nonpoint source contributions. Nonpoint sources include: wildlife, grazing livestock, land application of manure, land application of biosolids, urban/suburban runoff, failed and malfunctioning septic systems, and uncontrolled discharges (straight pipes, dairy parlor waste, etc.). There are 50 Virginia Pollutant Discharge Elimination Systems (VPDES) permitted dischargers in the Middle River and Upper South River watersheds. The permits range from single-family wastewater permits to waste water treatment facilities in Staunton and Churchville.

Fecal bacteria TMDLs in the Commonwealth of Virginia are developed using the *E. coli* standard. For this TMDL development, the in-stream *E. coli* target was a geometric mean not exceeding 126-cfu/100 ml and a single sample maximum of 235-cfu/100 ml. A translator developed by VADEQ was used to convert fecal coliform values to *E. coli* values.

General Standard (benthic)

TMDLs must be developed for a specific pollutant(s). Benthic assessments are very good at determining if a particular stream segment is impaired or not, but generally do not provide enough information to determine the cause(s) of the impairment. The process outlined in the Stressor Identification Guidance Document (EPA, 2000) was used to systematically identify the most probable stressor(s) for Christians Creek, Lewis Creek,

Moffett Creek and the Upper Middle River. After a comprehensive assessment, benthic TMDL development for Lewis Creek has been delayed until further tests are performed relating to the impact of sediment contamination within the watershed. A list of candidate causes was developed from published literature and VADEQ staff input. Chemical and physical monitoring data from ambient water quality data, toxicity tests and habitat assessment provided evidence to support or eliminate potential stressors. Individual metrics for the biological and habitat evaluation were used to determine if there were links to a specific stressor(s). Landuse data as well as a visual assessment of conditions along the stream provided additional information to eliminate or support candidate stressors. Potential stressors are: sediment, toxics, low dissolved oxygen, nutrients, pH, metals, conductivity, temperature and organic matter. A summary of stressor identification is included by impairment.

Christians Creek

The primary stressor on the aquatic life of Christians Creek was identified as lack of litter fall to the first order streams in the Christians Creek watershed from a lack of forest cover in the riparian corridors. A second minor stressor on the minor on the aquatic life in Christians Creek was identified as sedimentation from stream bank erosion. These two stressors are inexorably linked. A lack of riparian tree cover means that banks are likely unstable and are susceptible to erosion because tree roots are not holding and maintaining bank soils. Based on input from VADEQ and EPA, a TMDL for sediment inputs from the riparian corridor of first order streams was developed to address these stressors. Sediment loads delivered from areas in the first-order stream corridor including the stream channel were modeled and an instream input was established on a reference watershed approach. Implementing best management practices that establish riparian tree cover will increase leaf fall and decrease bank erosion and sedimentation.

One additional matter of concern in Christians Creek is the presence of toxic organics (chlordane and PCBs) that have been found in sediments from the stream. However, there is insufficient data to confirm that these pollutants are currently impacting the aquatic community.

Moffett Creek

The stressor on aquatic life in Moffett Creek was identified as excessive siltation leading to sedimentation, embeddedness, and loss of habitat.

Upper Middle River

Three stressors on the aquatic life in the Upper Middle River watershed have been identified- two major and one minor. The major stressors included (1) excessive siltation leading to sedimentation, embeddedness, and loss of habitat, and (2) lack of litterfall to the first order streams that results from lack of forest cover in the riparian corridors. The minor stressor is elevated nutrient level.

The two major stressors are interrelated and impacted by landuse in and around the riparian corridor. The third stressor, thought to be less important, is nutrient inputs. The diurnal swings do not drive Dissolved Oxygen (DO) below the standard, but the swing is pronounced, and both total phosphorus and nitrate concentrations are found at elevated levels. The results show sediment is the Most Probable Stressor and, therefore, it is the best and most practical pollutant for which to develop the TMDL because it is so interconnected with the other possible stressors.

Sediment is delivered to the impaired stream segments through surface runoff (rural and urban areas), streambank erosion, point sources, and natural erosive process. The sediment process is a natural and continual process that is often accelerated by human activity. During runoff events (natural rainfall or irrigation), sediment is transported to streams from land areas (e.g. agricultural fields, lawns, forest, etc.). Rainfall energy, soil cover, soil characteristics, topography, and land management affect the magnitude of sediment loading. Agricultural management activities such as overgrazing, particularly on steep slopes, high tillage operations, livestock concentrations, along stream edge, uncontrolled access to streams, forest harvesting, construction (roads, buildings, etc.) all tend to accelerate erosion at varying degrees. During dry periods, sediment from air or traffic builds up on impervious areas and is transported to streams during runoff events.

An increase in impervious land without appropriate stormwater control increases runoff volume and peaks and leads to greater potential for channel erosion. It has been well documented that livestock with access to streams can significantly alter physical dimensions of streams through trampling and shearing (Armour, et al., 1991; Clary and Webster, 1990; Kaufman and Kruger, 1984). Increasing the bank full width decreases stream depth, increases sediment, and adversely affects aquatic habitat (USDI, 1998).

Fine sediments are included in total suspended solids (TSS) loads that are permitted for wastewater, industrial stormwater and construction stormwater discharge. There are thirty-five permits listed in Christians Creek, Moffett Creek and the Upper Middle River impairments. These include small single-family wastewater discharge permits, one industrial stormwater discharge permit, 12 construction permits, and sewage and wastewater treatment facilities.

Reference Watershed Selection

A reference watershed approach was used to estimate the necessary load reductions for identified stressor(s) that are needed to restore a healthy aquatic community and allow impaired stream segments in Christians Creek, Moffett Creek, and Upper Middle river to achieve their designated uses. The reference watershed approach is based on selecting a non-impaired watershed in the same eco-region as the impaired watershed that has similar landuse, soils, and stream characteristics. Fourteen potential reference watersheds were initially selected based on non-impairment status, stream order, and eco-region. From the fourteen selected watersheds, individual reference watersheds were selected for Christians Creek, Moffett Creek and Upper Middle River.

Water Quality Modeling

Fecal Coliform

The US Geological Survey (USGS) Hydrologic Simulation Program - Fortran (HSPF) water quality model was selected as the modeling framework to simulate existing conditions and perform TMDL allocations. In establishing the existing and allocation

conditions, seasonal variations in hydrology, climatic conditions, and watershed activities were explicitly accounted for in the model. The hydrologic calibration/validation for Middle and Upper South River watersheds used 30-minute flow data from USGS Station #01625000 (Middle River at Grottoes) and USGS Station #01626000 (South River near Waynesboro). The distribution of flow volume between surface runoff, interflow, and groundwater was 20%, 14%, and 66%, respectively for Middle River; and 17%, 26%, and 57%, respectively for South River. The water quality calibration was conducted using monitored data from 10/1/92 through 9/30/97. Four parameters used in HSPF to index instream first order decay rate, maximum accumulation on land, rate of surface runoff that will remove 90% of stored fecal coliform per hour, and concentration of fecal coliform in interflow were initially set at expected levels for watershed conditions and adjusted within reasonable limits until an acceptable match between measured and modeled fecal coliform concentrations was established. The water quality validation was conducted using data for the time period from 10/1/97 to 9/30/02.

General Standard (benthic) - Sediment

There is no existing in-stream criteria for sediment in Virginia; therefore, a reference watershed approach was used to define allowable TMDL loading rates in Christians Creek, Moffett Creek and the Upper Middle River watersheds. This approach pairs two watersheds: one that is supportive of its designated use(s) and one whose streams are impaired. The Opequon Creek watershed was selected as the TMDL reference for Christians Creek, Mill Creek was selected as the reference watershed for Moffett Creek, and Hays Creek was selected as the reference watershed for the Upper Middle River. The TMDL sediment load was defined as the modeled sediment load for existing conditions from the non-impaired watersheds, area-adjusted to their respective impaired watershed. The Generalized Watershed Loading Function (GWLF) model (Haith et al., 1992) was used for comparative modeling for each impairment-reference watershed combination. Although the GWLF model was originally developed for use in ungaged watersheds, hydrologic calibration was performed to ensure that streamflows were being simulated within acceptable limits. The model for Christians Creek, Moffett Creek, and Upper Middle River was calibrated using the mean daily flow from USGS Station #01624800

for the period April 1992 through September 1997. Precipitation and temperature data were obtained from Stations #448975 and #448062. The model for Christians Creek reference watershed Opequon Creek was calibrated using USGS Station #01615000 for the period April 1992 through September 1997. Precipitation and temperature data were obtained from Stations #449186, #449181, and #440670. The model for Moffett Creek reference watershed Mill Creek was calibrated from nearby USGS Station #01632900. Precipitation and temperature data were obtained for Upper Middle River reference watershed Hays Creek was calibrated from nearby USGS Station #02022500 for the period April 1992 through September 1997. Precipitation and temperature data were obtained from Stations #445685, #444848. The model for Upper Middle River reference watershed Hays Creek was calibrated from nearby USGS Station #02022500 for the period April 1992 through September 1997. Precipitation and temperature data were obtained from Stations #445685, #444876, #443470, and #442064.

Existing Conditions

Fecal Coliform

Wildlife populations and ranges, biosolids application rates and practices, the rate of failure, location, and number of septic systems, domestic pet populations, numbers of cattle and other livestock, and information on livestock and manure management practices for the Middle and Upper South River watersheds were used to calculate fecal coliform load from land-based nonpoint sources in each impairment: Upper Middle River, Lewis Creek, Moffett Creek, Polecat Draft, Lower Middle River and Upper South River. The estimated fecal coliform production and accumulation rates due to these sources were calculated for the watershed and incorporated into the model. To accommodate the structure of the model, calculation of the fecal coliform accumulation and source contributions on a monthly basis accounted for seasonal variation in watershed activities such as wildlife feeding patterns and land application of manure. Also, represented in the model were direct nonpoint sources of uncontrolled discharges, direct deposition by wildlife, and direct deposition by livestock.

Contributions from all sources were updated to 2003 conditions to establish existing conditions. All runs were made using a representative precipitation record covering the period 10/1/92 through 9/30/97. Under existing conditions (2003), the HSPF model

provided a comparable match to the VADEQ monitoring data, with output from the model indicating violations of both the instantaneous and geometric mean standards for all impairments: Upper Middle River, Lewis Creek, Moffett Creek, Polecat Draft, Lower Middle River and Upper South River.

General Standard (benthic) - Sediment

The benthic TMDL for Christians Creek, Moffett Creek and Upper Middle River were developed using sediment as the primary stressor and Opequon Creek, Mill Creek, and Hays Creek as the reference watersheds, respectively. The reference watershed landuse categories (sediment source areas) were area-adjusted to match the watershed area of each respective impaired watershed to establish a common basis for comparing loads between the three watershed pairs. The areas for each landuse category (sediment source areas) in the Opequon Creek watershed were multiplied by 2.029 to match the Christians Creek watershed area. The areas for landuse categories (sediment source areas) in Mill Creek were multiplied by 0.6678 to match the Moffett Creek watershed area. The areas for each landuse category (sediment source areas) in Hays Creek were multiplied by 0.5973 to match the Upper Middle River watershed area.

The average annual sediment load (metric tons per year) from the area-adjusted Opequon Creek first order stream corridor defined the TMDL sediment load for Christians Creek. The sediment loads for existing conditions were calculated using the period January 1992 through March 2000 as representative of both wet and dry periods of precipitation. The target sediment TMDL load (existing conditions for Opequon Creek) was **6,168 T/yr**. The existing load from Christians Creek was **7,302 T/yr**.

The average annual sediment load (metric tons per year) from the area-adjusted Mill Creek defined the TMDL sediment load for Moffett Creek. The sediment loads for existing conditions were calculated using the period January 1992 through March 2000 as representative of both wet and dry periods of precipitation. The target sediment TMDL load (existing conditions for Mill Creek) was **3,864 T/yr**. The existing load from Moffett Creek was **9,589 T/yr**.

The average annual sediment load (metric tons per year) from the area-adjusted Hays Creek defined the TMDL sediment load for Upper Middle River. The sediment loads for existing conditions were calculated using the period January 1992 through March 2000 as representative of both wet and dry periods of precipitation. The target sediment TMDL load (existing conditions for Hays Creek) was **6,316 T/yr**. The existing load from Upper Middle River was **12,162 T/yr**.

Load Allocation Scenarios

Fecal Coliform

The next step in the TMDL process was to reduce the various source loads to levels that would result in attainment of the water quality standards. Because Virginia's *E. coli* standard does not permit any exceedances of the standard, modeling was conducted for a target value of 0% exceedance of the 126 cfu/100 ml geometric mean standard and 0% exceedance of the sample maximum *E. coli* standard of 235 cfu/100 ml. Scenarios were evaluated to predict the effects of different combinations of source reductions on final instream water quality. Modeling of these scenarios provided predictions of whether the reductions would achieve the target of 0% exceedance. The final allocation in percentages in loading from existing conditions are given in Table ES.1.

Table ES.1Final allocations in percentages in loading from existing conditions for
Upper Middle River Watershed.

		Percent Re	eduction in L	oading from I	Existing Cond	ition
Impairment	Direct Wildlife	NPS Wildlife	Direct Livestock	NPS Pasture / Livestock	Res./ Urban	Straight Pipe/ Sewer Overflow
Upper Middle River	0	99	100	99.9	99.9	100
Moffett Creek	36	93	100	99.9	99.9	100
Lewis Creek	75	99	100	99.9	99.9	100
Polecat Draft	6	0	100	99.99	83	100
Lower Middle River	0	71	100	99.9	99.9	100
Upper South River	0	97.5	55	99.9	99.9	100

General Standard (benthic) - Sediment

The target reduction load was calculated as the TMDL minus waste load allocations (WLAs) minus an explicit 10% margin of safety (MOS). Since the WLA is included in the calculation of the target reduction load, the existing watershed load (impaired watershed) only includes the nonpoint source loads plus stream channel loads.

Christians Creek

The reductions required to meet the TMDL in Christians Creek are given in Table ES.2. To meet the target-modeling load, a 25.9% overall sediment reduction will be required. Two sediment reduction allocations alternatives are presented in Table ES.3. In Alternative 1, the required sediment reduction is allocated to the stream channel. In Alternative 2, allocations are also made to pastureland and cropland within the 330-foot stream corridor. Alternatives to achieve sediment load reductions could include streamside fencing, streambank stabilization, stormwater management from urban areas, improved pasture management in the stream corridor zone, riparian tree planting to increase leaf litter and stabilize banks, etc.

Christians Creek (T/yr)		ctions Required	
(T/vr)	· •		
(1, 1, 1)	(T/yr)	(% of existing load)	
7,165	1,751	24.0	
7,236	1,822	25.0	
7,302	1,888	25.9	
6,168			
137			
617			
5,414			
	7,236 7,302 6,168 137 617	7,165 1,751 7,236 1,822 7,302 1,888 6,168 137 617 617	

 Table ES.2
 Required sediment reductions for Christians Creek Impairment.

Sediment Source	Existing	Sediment Load Reductions				
	Load	Alternative 1		Alternative 2		
Categories	(T/yr)	(%)	(T/yr)	(%)	(T/yr)	
LDR-PER-COR	0.003		0.003		0.003	
HDR-PER-COR	0.000		0.000		0.000	
COM-PER-COR	0.006		0.006		0.006	
Transitional-COR	0.000		0.000		0.000	
Forest-COR	1.281		1.281		1.281	
Pastureland	108.771		108.771	50	54.4	
Cropland	19.190		19.190	50	9.6	
LDR-IMP-COR	0.021		0.021		0.021	
HDR-IMP-COR	0.000		0.000		0.000	
COM-IMP-COR	0.060		0.060		0.060	
Channel Erosion-COR	7,173	28.3	5,143	27.4	5,208	
NPS + Channel	7,302		5,272		5,273	
WLA	137		137		137	
Totals	7,426		5,409		5,410	
Target Allocatior	n Load (TMDL-	MOS-WLA)	5,414		5,414	
_		TMDL	6,168		6,168	

 Table ES.3
 TMDL reductions for the Christians Creek Impairment.

Moffett Creek

The reduction required to meet the TMDL from existing conditions in Moffett Creek are given in Table ES.4. For allocation scenarios, the agricultural sub-categories for pastureland and cropland have been combined into two categories: cropland and pastureland (Table ES.5). For conditions existing in Moffett Creek, the majority of the sediment reduction must come from pastureland. Sediment reductions could be achieved through pasture improvement, better pasture management, or less intensive grazing. Two sediment reduction alternatives are presented in Table ES.5. Sediment reduction from Alternative 1 requires a 66% reduction from pastureland and 40% reduction from cropland. In Alternative 2, a 70.9% reduction from pastureland is required to achieve the sediment standard established by reference watershed Mill Creek.

	-			
Moffett Creek	Reductions Required			
(T /y r)	(T/yr)	(% of existing load)		
9,589	5,929	61.8		
3,864				
3,660				
	(T/yr) 9,589 3,864	(T/yr) (T/yr) 9,589 5,929 3,864 5,929		

 Table ES.4
 Required sediment reductions for Moffett Creek Impairment.

Sediment Source	Existing	ТМ	DL Sediment Load Reductions			
	Condition	Alterr	Alternative 1		rnative 2	
Categories	(T/yr)	(%)	(T/yr)	(%)	(T /yr)	
LDR-PER	0.381	0	0.381		0.381	
HDR-PER	0.000	0	0.000		0.000	
COM-PER	0.003	0	0.003		0.003	
Transitional	1.174	0	1.174		1.174	
Forest	177.686	0	177.686		177.686	
Urban Grass	0.000	0	0.000		0.000	
Pastureland	8,385	66.0	2,850.954	70.9	2,440.081	
Cropland	1,019	40.0	611.336		1,018.893	
LDR-IMP	0.573	0	0.573		0.573	
HDR-IMP	0.000	0	0.000		0.000	
COM-IMP	0.009	0	0.009		0.009	
Channel Erosion	5.389	0	5.389		5.389	
WLA	0.000	0	0.000		0.000	
Total	9,589		3,647.496		3,644.180	
Target Allocatio	n Load (TMDL-M	IOS-WLA)	3,660.000		3,660.000	

 Table ES.5
 TMDL reductions for the Moffett Creek Impairment.

Upper Middle River

The reduction required to meet the TMDL from existing conditions in Upper Middle River is given in Table ES.6. For allocation scenarios, the agricultural sub-categories for pastureland and cropland have been combined into two categories: cropland and pastureland (Table ES.7). For this situation, the majority of the reduction must come from pastureland and cropland. Reductions could be achieved through pasture improvement, better pasture management, less intensive grazing, and minimum tillage operations. Two sediment reduction alternatives are presented in Table ES.7. Sediment reduction Alternative 1 requires a 57.5% reduction from pastureland, and a 53% reduction from cropland. In Alternative 2, a 65% reduction from pastureland is required to achieve the sediment standard established by reference watershed Hays Creek.

Table ES.6	Required sediment reductions for Upper Middle River Impairment.
------------	--

Lood Summony	Upper Middle River	Reductions Required			
Load Summary	(T /y r)	(T/yr)	(% of existing load)		
Existing Load	12,162	6,593	54.2		
TMDL	6,316				
Target Modeling Load	5,569				

Sediment Source	Existing	T	MDL Sediment	IDL Sediment Load Reductions		
Categories	Conditions	Altern	ative 1	Alter	native 2	
_	(T /yr)	(%)	(T/yr)	(%)	(T/yr)	
LDR-PER	0.737		0.737		0.737	
HDR-PER	0.000		0.000		0.000	
COM-PER	0.000		0.000		0.000	
Transitional	188.777		188.777		188.777	
Forest	173.249		173.249		173.249	
Pastureland	10,355	57.5	4,401	65	3,624	
Cropland	1,439	53.0	676		1,438.536	
LDR-IMP	1.164		1.164		1.164	
HDR-IMP	0.000		0.000		0.000	
COM-PER	0.000		0.000		0.000	
Channel Erosion	4.648		4.648		4.648	
WLA	115.000		115.000		115.000	
Totals	12,162		5,560		5,546	
Target Allo	cation Load (TMDL	-MOS-WLA)	5,569		5,569	

 Table ES.7
 TMDL reductions for Upper Middle River Impairment.

Implementation

The goal of the TMDL program is to establish a three-step path that will lead to attainment of water quality standards. The first step in the process is to develop TMDLs that will result in meeting water quality standards. This report represents the culmination of that effort for the bacteria and General Standard (benthic) impairments in the Middle River and Upper South River watersheds. The second step is to develop a TMDL implementation plan. The final step is to implement the TMDL implementation plan, and to monitor stream water quality to determine if water quality standards are being attained.

Once EPA has approved a TMDL, measures must be taken to reduce pollution levels in the stream. These measures, which can include the use of better treatment technology and the installation of best management practices (BMPs), are implemented in an iterative process that is described along with specific BMPs in the implementation plan. The process for developing an implementation plan has been described in the recent *Guidance Manual for Total Maximum Daily Load Implementation Plans*, published in July 2003 and available upon request from the VADEQ and VADCR TMDL project staff or at http://www.deq.state.va.us/tmdl/implans/ipguide.pdf. With successful completion of implementation plans, Virginia will be well on the way to restoring impaired waters and enhancing the value of this important resource. Additionally, development of an

approved implementation plan will improve a locality's chances for obtaining financial and technical assistance during implementation.

In general, Virginia intends for the required reductions to be implemented in an iterative process that first addresses those sources with the largest impact on water quality. For example, in agricultural areas of the watershed, the most promising management practice to control bacteria and minimize streambank erosion is livestock exclusion from streams. This has been shown to be very effective in lowering bacteria concentrations in streams, both by reducing the direct cattle deposits and by providing additional riparian buffers. Reduced trampling and soil shear on streambanks by livestock has been shown to reduce bank erosion. Improved pasture management (including less intensive grazing, minimizing animal concentrations by frequent movement of winter feeding areas, and improving pasture forages) can significantly reduce soil loss from pasture areas. Reducing tillage operations, farming on the contour, strip cropping, maintaining a winter cover crop, etc. has been demonstrated as effective measure to reduce erosion from cropland agriculture. Additionally, in both urban and rural areas, reducing the human bacteria loading from failing septic systems should be a primary implementation focus because of its health implications. This component could be implemented through education on septic tank pump-outs as well as a septic system repair/replacement program and the use of alternative waste treatment systems.

Watershed stakeholders will have opportunity to participate in the development of the TMDL implementation plan. While specific goals for BMP implementation will be established as part of the implementation plan development, the Stage I scenarios are targeted at controllable, anthropogenic bacteria and sediment sources.

Public Participation

During development of the TMDL for the Middle River and Upper South River watersheds, public involvement was encouraged through five meetings. A basic description of the TMDL process and the agencies involved was presented at the kickoff meeting on October 29, 2002. The first public meeting was held to discuss the process for TMDL development, available data, data needs and timeline for the project. A

second public meeting was held to discuss the fecal bacteria impairments, specifically the source assessment input and hydrologic calibration. The third public meeting was focused on the benthic impairments, specifically stressor identification and reference watershed selection. At the fourth public meeting sediment modeling results and allocations were presented. The fifth public meeting was held to present modeling results and allocations.

The meetings served to facilitate understanding of, and involvement in, the TMDL process. Posters that graphically illustrated the "state of the watershed" were on display at each meeting to provide an additional information component for the stakeholders. MapTech personnel were on hand to provide further clarification of the data as needed. Input from these meetings was utilized in the development of the TMDL and improved confidence in the allocation scenarios that were developed.

ACKNOWLEDGEMENTS

Bill Keeling, Virginia Department of Conservation and Recreation (VADCR) Robert Brent, Virginia Department Environmental Quality (VADEQ), Regional Office Tamara Keeler, Watershed Coordinator, VADCR Dave Lazarus, VADEQ Central Charles Martin, VADEQ Central Jutta Schneider, VADEQ Central

Bruce Wiggins, James Madison University (JMU)

Headwaters Soil and Water Conservation District

City, Town, and County staff throughout the Middle and Upper South River Watersheds

Jurisdictions and individuals who provided data and access through their property

MapTech, Inc. of Blacksburg, Virginia, supported this study through funding provided by the Virginia Department of Conservation and Recreation contract #C199-02-735

PART I: BACKGROUND AND APPLICABLE STANDARDS

1. INTRODUCTION

1.1 Background

The need for TMDLs for the Middle and Upper South River watershed areas is based on provisions of the Clean Water Act. The document, *Guidance for Water Quality-Based Decisions: The TMDL Process* (United States Environmental Protection Agency, 1999), states:

According to Section 303(d) of the Clean Water Act and EPA water quality planning and management regulations, States are required to identify waters that do not meet or are not expected to meet water quality standards even after technology-based or other required controls are in place. The waterbodies are considered water quality-limited and require TMDLs.

...A TMDL is a tool for implementing State water quality standards, and is based on the relationship between pollution sources and in-stream water quality conditions. The TMDL establishes the allowable loadings or other quantifiable parameters for a waterbody and thereby provides the basis for States to establish water quality-based controls. These controls should provide the pollution reduction necessary for a waterbody to meet water quality standards.

The Middle and Upper South River watersheds in Virginia's Augusta County are part of the Potomac and Shenandoah River basins and include these impaired segments: Upper Middle River, Lewis Creek, Christians Creek, Moffett Creek, Polecat Draft, Lower Middle River, and South River (Figure 1.1). Lewis Creek, Christians Creek, Moffett Creek, and Polecat Draft are tributaries to Middle River. Middle River flows into North River, which joins South River to form the South Fork of the Shenandoah River. The Shenandoah River drains to the Potomac River, which flows into the Chesapeake Bay.

According to the 1996 303(d) TMDL Priority List (VADEQ 1996), Upper Middle River, Lewis Creek, Christians Creek, Moffett Creek, Polecat Draft, Lower Middle River and Upper South River are listed as impaired. VADEQ has identified all of these segments as impaired with regard to fecal coliform, and some as impaired with regard to both fecal coliform and the General Standard (benthic). All of these segments have remained on the 1998 and 2002 303(d) lists.

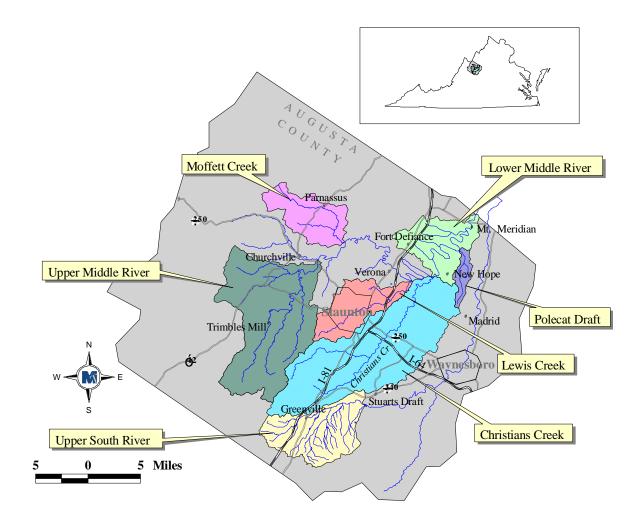


Figure 1.1 Location of impaired streams in the Middle River and Upper South River Watersheds.

The Upper Middle River (waterbody ID # VAV-B10R) was listed for fecal coliform during the 1996 assessment. During the 1998 assessment period, out of 21 samples collected at river mile 61.07, 8 violated the fecal coliform standard. During the 2002 assessment period, 6 of 13 samples taken at river mile 60.48 and 2 of 13 samples taken at river mile 61.07 violated the standard. A single benthic monitoring survey in 1995 indicated moderately impaired conditions at 2 stations in the Upper Middle River segment. The segment was over-listed for its benthic impairment by EPA in 1998, and was not sampled during the 2002 assessment. The fecal coliform impairment of the

Upper Middle River extends from the headwaters to the confluence with Jennings Branch (24.10 miles), while the benthic impairment extends only to the confluence with Eidson Creek (15.71 miles).

Lewis Creek (waterbody ID # VAV-B12R) was listed for both fecal coliform and benthic impairments. Out of 58 samples collected at river mile 2.91 during the 1998 assessment period, 36 violated the fecal coliform standard. Subsequently, during the 2002 assessment period, 25 of 58 samples violated the standard. Lewis Creek had a rating of moderately impaired during the 1998 assessment period and a rating of severely impaired during the 2002 assessment period at benthic monitoring station 1BLEW006.95. Lewis Creek is impaired beginning at the headwaters and continuing 12.06 miles downstream to its confluence with Middle River near Verona.

Christians Creek (waterbody ID # VAV-B14R) was listed for both fecal coliform and benthic impairments. A TMDL for the fecal coliform impairment has been completed and is available for review on VADEQ's web site (www.deq.state.va.us/tmdl/tmdlrpts.html). Because the biological monitoring station at the Rt. 795 bridge (1BCST007.42) indicated a moderately impaired benthic community, 31.52 stream miles were assessed as partially supporting the Clean Water Act's Aquatic Life Use Support Goal. As a result, Christians Creek was listed in the 1998 303(d) Total Maximum Daily Load Priority List and Report for violations of the General Standard (benthic). The 2002 303(d) Report on Impaired Waters showed Christians Creek as fully supporting the aquatic life use, based on several benthic assessments with "slightly impaired" scores. However, EPA will not accept a "slightly impaired" status as adequate to remove a stream from the list, and a TMDL was therefore required.

Moffett Creek (waterbody ID # VAV-B13R) was listed for both fecal coliform and benthic impairments. Out of 21 samples collected at the Rt. 42 bridge (river mile 6.24) during the 1998 assessment period, 7 violated the fecal coliform standard. During the 2002 assessment period, 6 of 23 samples violated the standard. Moffett Creek had a rating of moderately impaired during the 1998 assessment period at benthic monitoring station 1BMFT006.24. At two benthic monitoring stations (1BMFT006.20 and

1BMFT005.11), Moffett Creek had ratings of moderately impaired during the 2002 assessment period. The impaired segment of Moffett Creek extends from the confluence with Tunnel Branch 8.73 miles downstream to its confluence with Middle River.

Polecat Draft (waterbody ID # VAV-B15R) was listed for fecal coliform impairments. Out of 44 samples collected at the Rt. 776 bridge (river mile 1.03) during the 1998 assessment period, 26 violated the fecal coliform standard. During the 2002 assessment period, 35 of 54 samples violated the standard. Polecat Draft's impaired segment begins at the headwaters and continues 7.28 miles downstream to its confluence with Middle River.

Lower Middle River (waterbody ID # VAV-B15R) was listed for fecal coliform impairments. Out of 54 samples collected at the Rt. 769 bridge (river mile 1.83) during the 1998 assessment period, 10 violated the fecal coliform standard. During the 2002 assessment period, 7 of 56 samples violated the standard. Lower Middle River, beginning at Middle River's confluence with Christians Creek and continuing downstream 18.12 miles to its confluence with North River, is impaired.

Upper South River (waterbody ID # VAV-B30R) was listed for fecal coliform impairments. Out of 47 samples collected at the Rt. 671 bridge (river mile 41.68) during the 1998 assessment period, 17 violated the fecal coliform standard. During the 2002 assessment period, 13 of 55 samples violated the standard. The impaired segment of South River begins at its headwaters and continues 12.60 miles downstream to its confluence with Stony Run.

The Middle River and Upper South River watersheds (USGS Hydrologic Unit Code #02070005) are part of the Potomac and Shenandoah River basins. The land area of the affected watersheds is approximately 266,000 acres, with improved pasture and forest as the primary landuses (Figure 1.2).

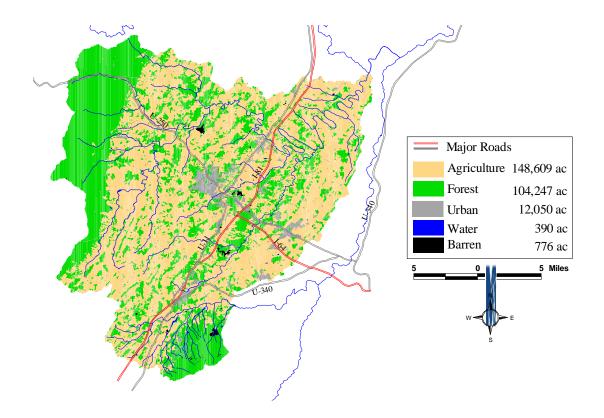


Figure 1.2 Landuses in the Middle River Watershed.

Using remotely-sensed data (specifically, Carterra imagery) consisting of 1996, 1997, and 1998 five-meter resolution panchromatic Indian Remote Sensing – 1C (IRS-1C) satellite images fused with 1997 LandSat-5 30-meter resolution color infrared satellite imagery (resulting in a twenty five-meter resolution fused color infrared image), VADCR developed a digital landuse coverage map utilizing ESRI-ArcInfo GIS software that identifies up to 32 possible landuse types. Landuse classification was done manually in ArcInfo on top of the fused twenty five-meter resolution imagery and was ground verified in the respective watersheds between 2001 and 2002. Approximate acreages and land-use proportions for each impaired segment are given in Table 1.1.

Impaired area	Acreage	Landuse Contributions (%)						
impan cu ai ca	Acteage	Agriculture	Forest	Water	Urban/Developing			
Upper Middle River	49,646	63.6	17.7	10.1	8.6			
Lewis Creek	17,941	54.7	24.9	0.2	20.2			
Christians Creek	68,429	63.0	28.9	0.0	8.1			
Moffett Creek	16,968	49.6	50	0.0	0.4			
Polecat Draft	3,510	64.3	26.6	0.0	9.1			
Lower Middle River	19,242	80.8	16.9	0.0	2.3			
South River	26,629	43.1	52.1	0.4	4.4			

 Table 1.1
 Area affecting the impairment and contributing landuses.

The estimated human population within the drainage area is 45,558 (United States Census Bureau, 1990, 2000). Among Virginia counties, Augusta County ranks 2^{nd} for the number of dairy cows, 2^{nd} for the number of all cattle and calves, 1^{st} for beef cattle, 4^{th} for the number of horses/ponies, and 2^{nd} for production of corn silage. Livestock, poultry, and poultry products sold were the leading source of Augusta farm income in 1997. Poultry and poultry products ranked second with 54 percent of this income (VASS 2001). Augusta County is also home to 487 species of wildlife, including 59 types of mammals (*e.g.*, beaver, raccoon, white-tailed deer) and 193 types of birds (*e.g.*, wood duck, wild turkey, Canada goose) (VDGIF, 1999).

For the period from 1948 to 2000, the Middle and South River watersheds received average annual precipitation of approximately 37.4 inches, with 56% of the precipitation occurring during the May through October growing season (SERCC, 2002). Average annual snowfall is 20.7 inches with the highest snowfall occurring during February (SERCC, 2002). Average annual daily temperature is 53 °F. The highest average daily temperature of 84.8 °F occurs in July, while the lowest average daily temperature of 22 °F occurs in January (SERCC, 2002).

1.2 Applicable Water Quality Standards

According to 9 VAC 25-260-5 of Virginia's State Water Control Board *Water Quality Standards*, the term "water quality standards" means "...provisions of state or federal law which consist of a designated use or uses for the waters of the Commonwealth and water quality criteria for such waters based upon such uses. Water quality standards are to

protect the public health or welfare, enhance the quality of water and serve the purposes of the State Water Control Law and the federal Clean Water Act."

As stated in Virginia state law 9 VAC 25-260-10 (Designation of uses),

A. All state waters, including wetlands, are designated for the following uses: recreational uses, e.g., <u>swimming and boating</u>; the propagation and growth of <u>a balanced</u>, <u>indigenous population of aquatic life</u>, including game fish, which might reasonably be expected to inhabit them; wildlife; and the production of edible and marketable natural resources, e.g., fish and shellfish.

D. At a minimum, uses are deemed attainable if they can be achieved by the imposition of effluent limits required under §§301(b) and 306 of the Clean Water Act and cost-effective and reasonable best management practices for nonpoint source control.

Because this study addresses both fecal coliform and benthic impairments, two water quality criteria are applicable. 9 VAC 25-260-170 applies to the fecal coliform impairment, whereas the General Standard section (9 VAC25-260-20) applies to the benthic impairment.

1.3 Applicable Criteria for Fecal Coliform Impairment

Prior to 2002, Virginia Water Quality Standards specified the following criteria for a nonshellfish supporting waterbody to be in compliance with Virginia's fecal standard for contact recreational use:

A. General requirements. In all surface waters, except shellfish waters and certain waters addressed in subsection B of this section, the fecal coliform bacteria shall not exceed a geometric mean of 200 fecal coliform bacteria per 100 ml of water for two or more samples over a 30-day period, or a fecal coliform bacteria level of 1,000 per 100 ml at any time.

If the waterbody exceeded either criterion more than 10% of the time, the waterbody was classified as impaired and the development and implementation of a TMDL was indicated in order to bring the waterbody into compliance with the water quality criterion. Based on the sampling frequency, only one criterion was applied to a particular datum or

data set. If the sampling frequency was one sample or less per 30 days, the instantaneous criterion was applied; for a higher sampling frequency, the geometric criterion was applied. This was the criterion used for listing the impairments included in this study. Sufficient fecal coliform bacteria standard violations were recorded at VADEQ water quality monitoring stations to indicate that the recreational use designations are not being supported.

EPA subsequently recommended that all states adopt an *Escherichia coli* (E. coli) or enterococci standard for fresh water and enterococci criteria for marine waters by 2003. EPA is pursuing the states' adoption of these standards because there is a stronger correlation between the concentration of these organisms (E. coli and enterococci) and the incidence of gastrointestinal illness than with fecal coliform. E. coli and enterococci are both bacteria that can be found in the intestinal tract of primarily warm-blooded animals. E. coli is a species of bacteria included in the broader fecal coliform category. Like fecal coliform bacteria, these organisms indicate the presence of fecal contamination. The adoption of the *E. coli* and *enterococci* standard is now in effect in Virginia as of January 15, 2003.

The new criteria, outlined in 9 VAC 25-260-170, read as follows

A. In surface waters, except shellfish waters and certain waters identified in subsection B of this section, the following criteria shall apply to protect primary contact recreational uses:

1. Fecal coliform bacteria shall not exceed a geometric mean of 200 fecal coliform bacteria per 100 ml of water for two or more samples over a calendar month nor shall more than 10% of the total samples taken during any calendar month exceed 400 fecal coliform bacteria per 100 ml of water. This criterion shall not apply for a sampling station after the bacterial indicators described in subdivision 2 of this subsection have a minimum of 12 data points or after June 30, 2008, whichever comes first.

2. E. coli and enterococci bacteria per 100 ml of water shall not exceed the following:

	Geometric Mean [*]	Single Sample Maximum ²	
Freshwater ³			
E. coli	126	235	

. .

1

~.

Saltwater and Transition Zone ³	3	
enterococci	35	104

¹ For two or more samples taken during any calendar month.

² No single sample maximum for *enterococci* and *E. coli* shall exceed a 75% upper one-sided confidence limit based on a site-specific log standard deviation. If site data are insufficient to establish a site-specific log standard deviation, then 0.4 shall be used as the log standard deviation in freshwater and 0.7 shall be as the log standard deviation in saltwater and transition zone. Values shown are based on a log standard deviation of 0.4 in freshwater and 0.7 in saltwater. ³ See 9 VAC 25-260-140 C for freshwater and transition zone delineation.

The E. coli criteria were used in developing the bacteria TMDLs included in this study.

1.4 Applicable Criterion for Benthic Impairment

The General Standard, as defined in Virginia state law 9 VAC25-260-20, states:

A. All state waters, including wetlands, shall be free from substances attributable to sewage, industrial waste, or other waste in concentrations, amounts, or combinations which contravene established standards or interfere directly or indirectly with designated uses of such water or which are inimical or harmful to human, animal, plant, or <u>aquatic life</u>.

The General Standard is implemented by VADEQ through application of the Rapid Bioassessment Protocol II (RBP). Using the RBP, the health of the benthic macroinvertebrate community is typically assessed through measurement of 8 biometrics (Table 1.2) that evaluate different aspects of the community's overall health. Surveys of the benthic macroinvertebrate community performed by VADEQ are assessed at the family taxonomic level.

Each biometric measured at a target station is compared to the same biometric measured at a reference (non-impaired) station to determine each biometric score. These scores are then summed and used to determine the overall bioassessment (*e.g.*, non-impaired, slightly impaired, moderately impaired, or severely impaired).

Biometric	Benthic Health ¹
Taxa Richness	1
Modified Family Biotic Index	\downarrow
Scraper to Filtering Collector Ratio	1
EPT / Chironomid Ratio	1
% Contribution of Dominant Family	\downarrow
EPT Index	1
Community Loss Index	\downarrow
Shredder to Total Ratio	↑

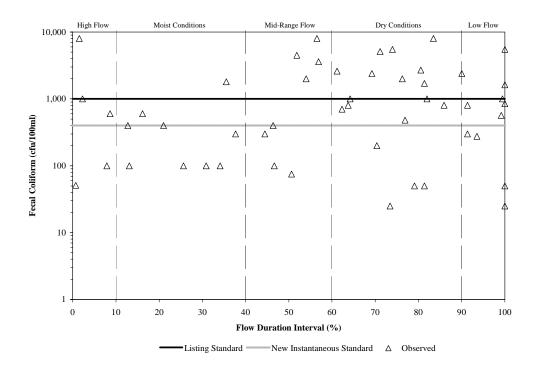
Table 1.2Components of the RBP Assessment.

¹An upward arrow indicates a positive response in benthic health when the associated biometric increases.

PART II: FECAL BACTERIA TMDLS

2. TMDL ENDPOINT AND WATER QUALITY ASSESSMENT

2.1 Selection of a TMDL Endpoint and Critical Condition


Upper Middle River, Lewis Creek, Moffett Creek, Polecat Draft, Lower Middle River and Upper South River were initially placed on the Virginia 1996 303(d) TMDL Priority List based on monitoring performed by VADEQ. All of these segments have remained on the 1998 and 2002 303(d) lists. Elevated levels of fecal coliform bacteria recorded at VADEQ ambient water quality monitoring stations showed that these stream segments do not support the primary contact recreation use designation.

The first step in developing a TMDL is the establishment of in-stream numeric endpoints, which are used to evaluate the attainment of acceptable water quality. In-stream numeric endpoints, therefore, represent the water quality goals that are to be achieved by implementing the load reductions specified in the TMDL. For the Middle and South Rivers TMDLs, the applicable endpoints and associated target values can be determined directly from the Virginia water quality regulations (Section 1.2 of this document). In order to remove a water body from a state's list of impaired waters, the Clean Water Act requires compliance with that state's water quality standard. The in-stream *E. coli* targets for these TMDLs were a calendar month geometric mean not exceeding 126 cfu/100 ml and a single sample not exceeding 235 cfu/100 ml.

EPA regulations at 40 CFR 130.7 (c)(1) require TMDLs to take into account critical conditions for stream flow, loading, and water quality parameters. The intent of this requirement is to ensure that the water quality of streams is protected during times when it is most vulnerable.

Critical conditions are important because they describe the factors that combine to cause a violation of water quality standards and help in identifying the actions that may have to be undertaken to meet water quality standards. Fecal coliform sources within the Middle and South River watersheds are attributed to both point and nonpoint sources. Critical conditions for waters impacted by land-based nonpoint sources generally occur during periods of wet weather and high surface runoff. In contrast, critical conditions for point source-dominated systems generally occur during low flow and low dilution conditions. Point sources, in this context also, include nonpoint sources that are not precipitation driven (e.g., direct fecal deposition to stream).

In order to assess the existence of a critical flow regime, data from all stations in Middle River were considered (Figure 2.1 through Figure 2.7), as the hydrologic model was calibrated at the outlet. While violations at some stations (*i.e.*, 1BMDL060.48, 1BMDL061.48, and 1BMFT006.20) appear to be associated with low-flow conditions, and violations at other stations (*i.e.*, 1BMDL001.83 and 1BMDL036.08) appear to be associated with high-flow conditions, high concentrations of fecal coliform were recorded in all flow regimes when considering all of the stations. Similarly, data collected from South River (*i.e.*, 1BSTH041.68) indicated that violations were recorded in all flow regimes. Based on this assessment, a period for calibration and validation (Section 4.5) was chosen based on the overall distribution of wet and dry seasons.

Figure 2.1 Relationship between fecal coliform concentrations and flow duration interval in the Upper Middle River Impairment. (VADEQ Stations 1BMDL060.48 and 1BMDL061.48).

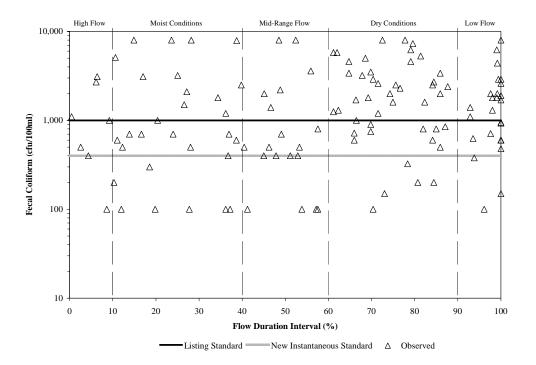
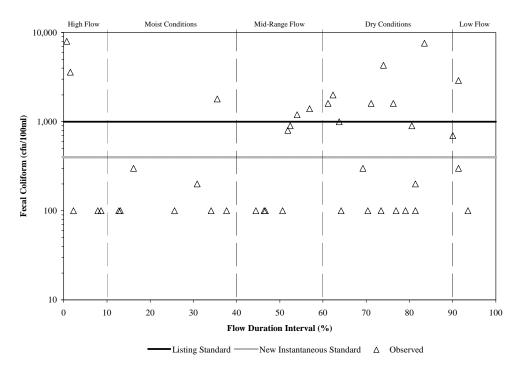



Figure 2.2 Relationship between fecal coliform concentrations and flow duration interval in the Lewis Creek impairment (1BLEW002.91).

Figure 2.3 Relationship between fecal coliform concentrations and flow duration interval in the Moffett Creek impairment (VADEQ station 1BMFT006.20).

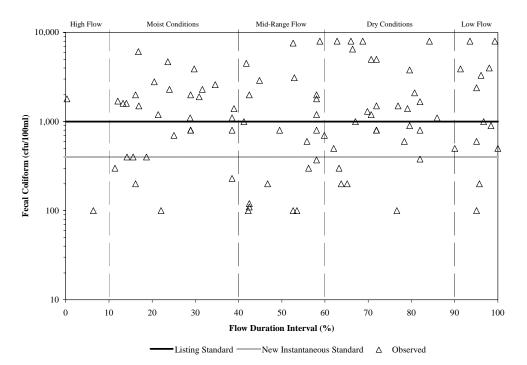
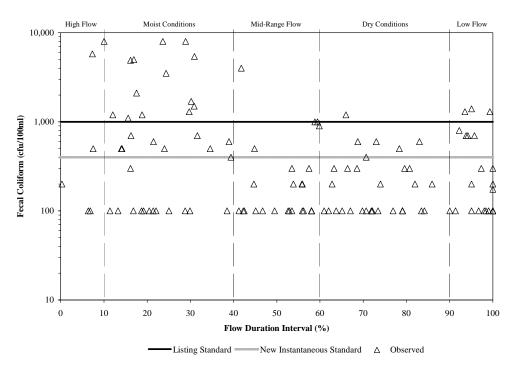



Figure 2.4 Relationship between fecal coliform concentrations and flow duration interval in the Polecat Draft impairment (VADEQ Station 1BPCD001.03).

Figure 2.5 Relationship between fecal coliform concentrations and flow duration interval in the Lower Middle River impairment (VADEQ Station 1BMDL001.83).

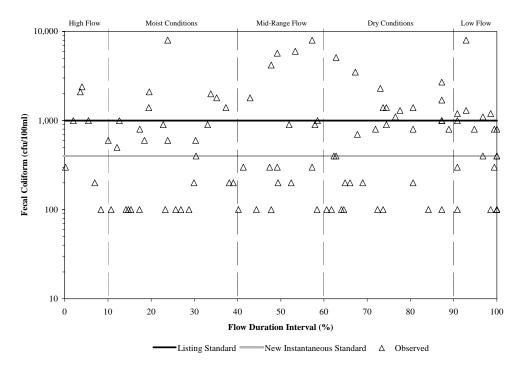
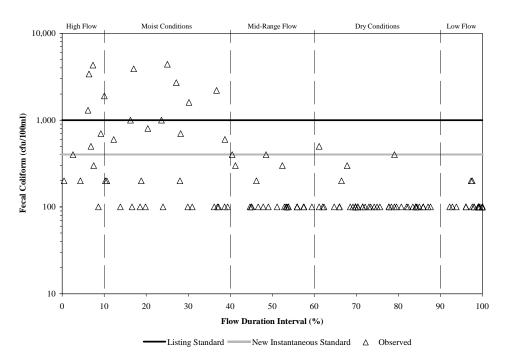



Figure 2.6 Relationship between fecal coliform concentrations and flow duration interval in the South River impairment (VADEQ Station 1BSTH041.68).

Figure 2.7 Relationship between fecal coliform concentrations and flow duration interval in the non-impaired section of Middle River (VADEQ Station 1BMDL036.08).

2.2 Discussion of In-stream Water Quality

This section provides an inventory and analysis of available observed in-stream fecal coliform monitoring data throughout the Middle River and Upper South River watersheds. An examination of all data available for the entire study area was analyzed. Sources of data and pertinent results are discussed.

2.2.1 Inventory of Water Quality Monitoring Data

The primary sources of available water quality information are:

- 19 VADEQ in-stream monitoring stations located in the Middle and Upper South River watersheds;
- water quality monitoring conducted by James Madison University (JMU) as part of the services contracted for this TMDL;
- water quality monitoring performed by the City of Staunton to assess the city's impact on fecal coliform levels; and
- monitoring conducted by the Izaak Walton League in cooperation with Virginia Department of Game and Inland Fisheries (VDGIF).

2.2.1.1 Water Quality Monitoring Conducted by VADEQ

Data from in-stream fecal coliform samples, collected by VADEQ within the study area are available from April 1973 through June 2001 (Figure 2.8) and are included in the analysis. Samples were taken for the express purpose of determining compliance with the state instantaneous standard limiting concentrations to less than 1,000 cfu/100 ml. Therefore, as a matter of economy, the vast majority of samples showing fecal coliform concentrations below 100 cfu/100 ml or in excess of 8,000 cfu/100 ml were not further analyzed to determine the precise concentration of fecal coliform bacteria. The result is that reported concentrations of 100 cfu/100 ml most likely represent concentrations below 100 cfu/100 ml, and reported concentrations of 8,000 cfu/100 ml most likely represent concentrations in excess of this value. Table 2.1 summarizes the fecal coliform samples collected at the in-stream monitoring stations.

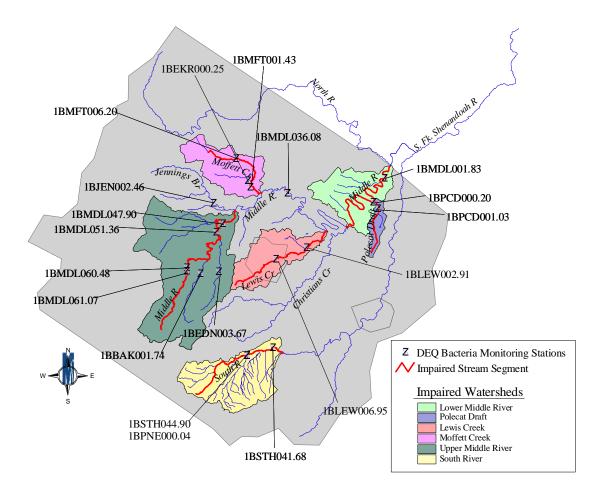
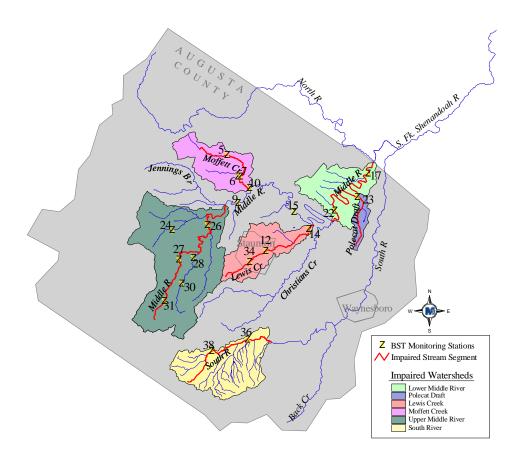


Figure 2.8 Location of VADEQ water quality monitoring stations in the Middle River watershed.

Table 2.1	Summary of fecal	uninary of fecal comorni monitoring conducted by VADEQ for period April 1975 through June								
Impairment	VADEQ Station	Count (#)	Minimum (cfu/100ml)	Maximum (cfu/100ml)	Mean (cfu/100ml)	Median (cfu/100ml)	Violations ¹ %	Violations ²		
Back Creek	1BBAK001.74	9	100	3,800	944	500	22	56		
Eidson Creek	1BEDN003.67	7	100	3,900	1,471	600	43	71		
Elk Run	1BEKR000.25	7	100	1,700	371	200	14	14		
Jennings Branch	1BJEN002.46	39	100	800	154	100	0	5		
Lewis Creek	1BLEW002.91	143	90	8,000	1,893	900	46	78		
Lewis Creek	1BLEW006.95	2	1,000	2,000	1,500	1,500	50	100		
Middle River	1BMDL001.83	119	100	8,000	783	200	17	34		
Middle River	1BMDL036.08	129	100	4,400	358	100	7	14		
Middle River	1BMDL047.90	7	100	500	157	100	0	14		
Middle River	1BMDL051.36	37	25	2500	266	100	8	8		
Middle River	1BMDL060.48	23	25	8,000	1,573	568	35	57		
Middle River	1BMDL061.07	28	51	8,000	1,605	800	32	61		
Moffett Creek	1BMFT001.43	7	100	1,600	343	100	14	14		
Moffett Creek	1BMFT006.20	41	100	8,000	1,100	200	29	41		
Polecat Draft	1BPCD000.20	6	100	5400	2483	1650	83	83		
Polecat Draft	1BPCD001.03	94	100	8,000	2,035	1,150	53	76		
Pine Run	1BPNE000.04	7	100	1,100	257	100	14	14		
South River	1BSTH041.68	103	100	8,000	1,083	600	27	51		
South River	1BSTH044.90	7	100	600	257	200	0	29		

Summary of fecal coliform monitoring conducted by VADEO for period April 1973 through June 2001 Table 2.1


¹ Violations are based on the pre-2003 fecal coliform instantaneous standard (*i.e.*, 1,000 cfu/100ml) ² Violations are based on the interim fecal coliform instantaneous standard (*i.e.*, 400 cfu/100ml)

2-8

TMDL Development

2.2.1.2 Water Quality Monitoring Conducted by James Madison University.

Water quality samples were taken at 20 sites throughout the Middle and Upper South River watersheds over a twelve month period (Figure 2.9). A total of 216 stream samples were collected. All samples were analyzed for fecal coliform, *E. coli*, and *enterococci* concentrations. Additionally, samples were analyzed for fecal type. Table 2.2 summarizes the fecal coliform concentration data collected by JMU at the ambient stations.

Figure 2.9 Location of JMU water quality monitoring stations in the Middle River watershed.

Site	Count (#)	Minimum (cfu/100ml)	Maximum (cfu/100ml)	Mean (cfu/100ml)	Median (cfu/100ml)
Moffett Creek (HU B13)		· · · · · ·			,
5 @ Route 42	9	3	3,600	658	210
6 Elk Run @ Route 835	12	3	3,100	570	348
7 @ Route 733	12	20	1,650	472	192
10@ Route 732	11	7	3,550	694	303
Upper Middle River (HU B10)					
31 @ Route 602	12	78	11,750	2,310	846
27 @ Route 705	12	35	4,900	1,076	402
30 Back Creek @ Route 841	12	22	2,100	662	379
28 Back Creek @ Route 707	8	43	8,350	2,150	1,028
26 @ Route 720	11	0	1,300	409	115
24 Buffalo Branch @ Route 703	12	1	172	28	13
Middle Middle River (HU B12)					
9 @ Route 732	11	0	2,605	386	170
15 @ Route 11	12	0	667	165	37
Lewis Creek (HU B12)					
34 @ Route 252	9	15	2,600	639	195
12 @ Route 254	12	242	24,000	4,158	1,083
14 @ Route 612	11	62	3,300	694	390
Lower Middle River (HU B15)					
22 @ Route 16	12	7	10,000	1,232	129
23 Polecat Draft @ Route 608	8	0	1,095	497	535
17 @ Route 769	11	5	4,900	663	130
Upper South River (HU B30)					
38 @ Route 662	12	45	10,750	1,769	440
36 @ Route 652	11	30	2,115	570	395

Table 2.2Summary of water quality sampling conducted by James Madison
University. Fecal coliform concentrations (cfu/100 ml).

2.2.1.3 Water Quality Monitoring Conducted by the City of Staunton

The city of Staunton performed water quality monitoring in the Lewis Creek watershed in order to assess the city's impact on fecal coliform levels. Although the analysis was not conducted under a VADEQ approved Quality Assurance Project Plan (QAPP), and therefore cannot be used for quantitative assessment, the data are presented here for use as a qualitative record of fecal coliform levels in this area.

Monitoring locations were selected to determine if any fecal coliform is present coming into the City of Staunton. The City sampled at 35 different locations. These sites were used to narrow locations where spikes in fecal coliform counts occurred. Ten sites were chosen for monthly monitoring. Monitoring at these sites was started in October 1998 and continues to be done monthly. The location of sampling stations is shown in Figure 2.10, and the results of the analysis are shown in Table 2.3.

The sampling performed by the city revealed problems with the sewer system, and helped in targeting repair efforts. It is evident that there are still fecal coliform problems in the Lewis Creek watershed, as most of the sampling was performed after repairs to the sewer line were made, and fecal coliform concentrations continue to exceed the standard.

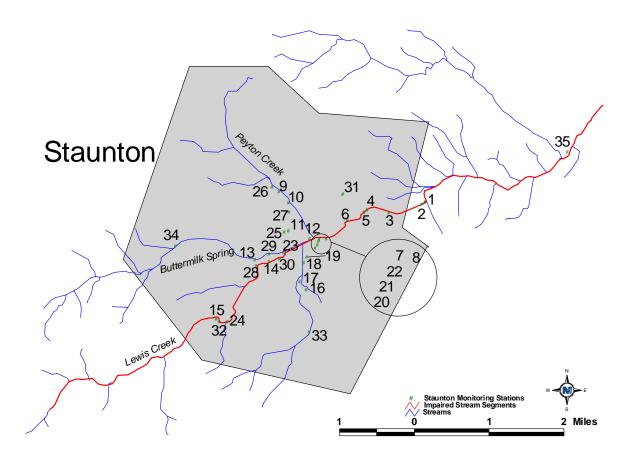


Figure 2.10 Location of stations monitored during a Water Quality Study conducted by the City of Staunton.

Impairment	Station	Count (#)	Minimum (cfu/100ml)	Maximum (cfu/100ml)	Mean (cfu/100ml)	Median (cfu/100ml)				
Lewis Creek	1	54	9	26,900	2,015	535				
Lewis Creek	2	4	190	20,900	6,768	2,990				
Lewis Creek	3	1	20,000	20,000	20,000	20,000				
Lewis Creek	4	5	320	20,000	6,964	4,000				
Lewis Creek	5	5	70	20,000	5,362	1,380				
Lewis Creek	6	2	4,500	5,900	5,200	5,200				
Lewis Creek	7	52	150	20,000	4,053	1,990				
Lewis Creek	8	5	600	21,500	7,340	5,000				
Lewis Creek	9	3	320	6,100	2,623	1,450				
Lewis Creek	10	5	260	20,000	7,372	5,300				
Lewis Creek	11	58	390	20,000	4,911	3,400				
Lewis Creek	12	4	780	19,000	6,645	3,400				
Lewis Creek	13	7	200	20,000	3,559	600				
Lewis Creek	14	6	1,670	20,000	6,845	4,800				
Lewis Creek	15	55	5	8,600	787	320				
Lewis Creek	16	1	1,143	1,143	1,143	1,143				
Lewis Creek	17	3	100	4,000	1,749	1,147				
Lewis Creek	18	3	70	3,600	1,323	300				
Lewis Creek	19	3	900	2,600	1,533	1,100				
Lewis Creek	20	3	1,800	3,000	2,331	2,193				
Lewis Creek	21	1	2,100	2,100	2,100	2,100				
Lewis Creek	22	5	2,800	7,200	5,020	4,600				
Lewis Creek	23	7	730	7,900	4,287	2,900				
Lewis Creek	24	6	380	20,000	8,170	4,800				
Lewis Creek	25	3	800	1,733	1,211	1,100				
Lewis Creek	26	53	12	6,100	566	208				
Lewis Creek	27	5	1,000	20,000	7,320	3,400				
Lewis Creek	28	4	1,335	20,000	9,164	7,660				
Lewis Creek	29	59	1	21,600	2,862	578				
Lewis Creek	30	3	450	1,330	863	810				
Lewis Creek	31	1	1,180	1,180	1,180	1,180				
Lewis Creek	32	3	820	10,100	4,030	1,170				
Lewis Creek	33	1	3,100	3,100	3,100	3,100				
Lewis Creek	34	49	2	2,900	421	98				
Lewis Creek	35	49	3	20,400	1,166	256				

Table 2.3Summary of water quality sampling conducted by the City of
Staunton.

2.2.1.4 Water Quality Monitoring Conducted by the Izaak Walton League

The Izaak Walton League, in conjunction with VDGIF, conducted monitoring of streams throughout Augusta County to assess levels of fecal bacteria. As with the city of Staunton data, the monitoring was conducted without a VADEQ approved QAPP. The data are presented here as a qualitative record of fecal bacterial levels in the study area. The location of sampling stations is shown in Figure 2.11, and the results of the analysis are shown in Table 2.4.

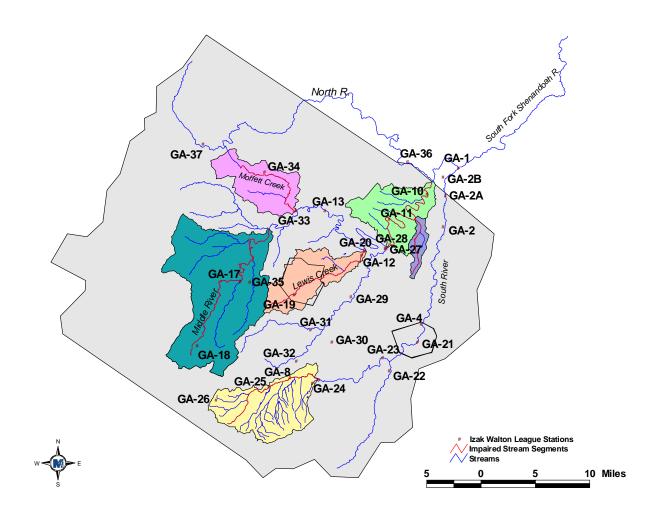


Figure 2.11 Location of stations monitored by the Izaak Walton League.

	ton League					
Impairment	Station	Count	Minimum	Maximum	Mean	Median
-		(#)	(cfu/100ml)	(cfu/100ml)	(cfu/100ml)	(cfu/100ml)
South River	GA-1	6	20	300	170	180
South River	GA-2	6	20	300	180	200
South River	GA-2A	6	70	1,700	497	300
South River	GA-2B	6	80	800	277	175
South River	GA-4	6	20	1,300	357	200
South River	GA-8	6	500	2,200	1,200	1,200
South River	GA-23	6	70	500	233	130
Jones Hollow	GA-21	6	80	16,000	5,047	2,350
Back Creek	GA-22	5	70	2,400	670	300
Stony Run	GA-24	4	40	2,800	890	360
Poor Creek	GA-25	6	40	500	195	80
Broadhead Creek	GA-26	6	20	3,000	1,133	650
Christians Creek	GA-32	6	500	16,000	5,300	2,700
Christians Creek	GA-29	6	40	1,300	553	400
Christians Creek	GA-28	6	40	2,200	502	100
Lewis Creek	GA-19	6	300	2,200	967	700
Lewis Creek	GA-20	6	130	5,000	3,305	4,000
Middle River	GA-10	6	110	300	192	190
Middle River	GA-11	6	40	800	270	105
Middle River	GA-12	6	80	500	313	285
Middle River	GA-13	5	40	300	137	80
Middle River	GA-17	6	800	16,000	6,143	2,400
Middle River	GA-18	6	230	16,000	230	2,250
Meadow Run	GA-27	6	20	500	200	150
Moffett Creek	GA-33	5	70	3,000	230	800
Barterbrook Branch	GA-30	7	800	16,000	5,367	4,000
Folly Mills Creek	GA-31	6	230	9,000	2,888	1,200
Eidson Creek	GA-35	7	500	16,000	5,214	1,100
Jennings Branch	GA-34	6	20	3,000	1,003	235
North River	GA-36	6	230	5,000	1,255	500
North River	GA-37	7	20	230	90	20

Table 2.4Summary of fecal coliform monitoring conducted by the Izaak
Walton League.

2.2.2 Analysis of Monitoring Data

A wide range of fecal coliform concentrations have been recorded in the watershed. The data collected by VADEQ were analyzed for frequency of violations, patterns in fecal source identification, and seasonal impacts. Results of the analyses are presented in the following sections.

2.2.2.1 Summary of Frequency of Violations at the Monitoring Stations

All water quality data were collected at least monthly. The former state standard of 1,000 cfu/100 ml and the interim standard of 400 cfu/100ml were used to test for violations.

All stations show some level of violations when compared to the interim standard. Only two stations (*i.e.*, 1BJEN002.46 and 1BMDL051.36) had less than 10 % violations when compared to the interim standard. A distribution of fecal coliform concentrations at each sampling station in the watershed can be found in Appendix A.

2.2.2.2 Bacterial Source Tracking

James Madison University was contracted by VADCR to do in-stream sampling and analysis of fecal coliform concentrations as well as bacterial source tracking (BST). BST is intended to aid in identifying sources (*i.e.*, human, pet, livestock, or wildlife) of fecal contamination in water bodies. While the short available time-frame and the small number of observations taken in this case made drawing conclusions difficult, the data collected provided insight into likely sources of fecal contamination, aided in distributing fecal loads from different sources during model calibration, and should improve the chances for success in implementing the appropriate control measures.

Several BST methods are currently under development. For this project, the Antibiotic Resistance Analysis (ARA) method was used to indicate the potential sources of fecal contamination in streams. This method was selected because it has been demonstrated to be a reliable procedure for indicating the presence of human, livestock, and wildlife sources in watersheds in Virginia. The results of sampling were reported as the percentage of isolates acquired from the sample. These isolates were identified as originating from human, livestock, or wildlife sources.

The results show some general patterns across the stations, as well as some stationspecific patterns. In general, domestic animals (*e.g.*, livestock) appear to be the major contributors of fecal bacteria to the stream, followed by wildlife and human sources. However, in samples collected from Lewis Creek (*i.e.*, stations 12 and 34), there is a significant and consistent contribution from human sources. A similar situation is evident in sampling from Back Creek (*i.e.*, station 28) in the Upper Middle River watershed. The statistical significance was determined through two tests. The first was based on the sample size. A z-test was used to determine if the proportion was significantly different from zero (alpha = 0.10). Second, the rate of false positives was calculated for each source category in each library, and a proportion was not considered significantly different from zero unless it was greater than the false-positive rate plus three standard deviations.

2.2.2.3 Trend and Seasonal Analyses

In order to improve TMDL allocation scenarios and, therefore, the success of implementation strategies, trend and seasonal analyses were performed on precipitation, discharge, and fecal coliform concentrations. A Seasonal Kendall Test was used to examine long-term trends. The Seasonal Kendall Test ignores seasonal cycles when looking for long-term trends. This improves the chances of finding existing trends in data that are likely to have seasonal patterns. Additionally, trends for specific seasons can be analyzed. For instance, the Seasonal Kendall Test can identify the trend (over many years) in discharge levels during a particular season or month.

A seasonal analysis of precipitation, discharge, and fecal coliform concentration data was conducted using the Mood Median Test. This test was used to compare median values of precipitation, discharge, and fecal coliform concentrations in each month. Significant differences between months within years were reported.

2.2.2.4 Precipitation

Total monthly precipitation measured at Station #448062 in Augusta County, Virginia from January 1980 to January 2003 was analyzed, and no overall, long-term trend was found. Differences in mean monthly precipitation at station #448062 are indicated in Table 2.5. Precipitations in months with a different median group letter are significantly different from each other at the 95% significance level. For example, February is in median group "A", while May and July are in median group "B"; therefore precipitation in February is significantly different than the amount of precipitation in May and July. Precipitation values in months that fall into multiple median groups are not significantly different from any of the groups that those months are classified under. For example, January is not significantly different than precipitation in months that fall into either

median group "A" or median group "B". In general, precipitation in the spring to summer months tends to be higher than precipitation in the fall to winter months.

2.2.2.5 Discharge

Total monthly flow measured at Station #01625000 in Rockingham County, Virginia (Middle River at Grottoes) from January 1970 to December 2000, was analyzed and no overall, long-term trend was found. Differences in mean monthly flow at Station #01625000 (Middle River at Grottoes) are indicated in Table 2.6. Flows in months with the same median group letter are not significantly different from each other at the 95% significance level. For example, September, October, and November are all in median group "A"; therefore September, October, and November are not significantly different from each other. In general, flow in the winter to spring months tends to be higher than flow in the summer to fall months.

	Station	448062.			
Month	Mean (in)	Minimum (in)	Maximum (in)	Median Groups	
January	2.78	0.12	7.21	А	В
February	2.42	0.23	10.37	А	
March	3.16	0.73	7.57	А	В
April	2.92	0.93	8.68	А	В
May	3.71	1.42	8.21		В
June	3.44	0.76	13.40	А	В
July	3.77	1.27	8.94		В
August	3.45	0.57	9.24	А	В
September	3.66	0.04	12.82	А	В
October	3.44	0.02	9.65	А	В
November	2.99	0.24	11.85	А	В
December	2.54	0.31	6.28	А	В

Table 2.5Summary of the Mood Median Test on mean monthly precipitation at
Station 448062.

Table 2.6	Summary of the Mood Median Test on mean monthly flow at USGS
	Station 01625000.

Month	Month Mean Minimum (cfs) (cfs)		Maximum (cfs)		Median Groups		
January	475.63	66.94	1,435.58			С	D
February	532.65	118.32	2,287.86			С	D
March	634.04	106.48	1,595.58				D
April	497.88	95.83	1,674.27			С	D
May	383.74	124.61	962.97			С	D
June	293.45	76.33	992.93			С	
July	187.85	61.26	704.52		В		
August	169.39	55.65	449.68	А	В		
September	236.71	65.80	1,886.90	А			
October	261.85	77.61	1,138.48	А	В		
November	296.55	90.03	2,018.67	А	В	С	
December	336.93	79.81	968.61			С	

2.2.2.6 Fecal Coliform Concentrations

Water quality monitoring data collected by VADEQ were described in section 2.2.1.1. The trend analysis was conducted on data collected at stations used in TMDL assessment, when a sufficient amount of data (*i.e.*, a minimum of 3 years of data for each month reported) was available. An overall trend in fecal coliform concentrations was detected at station 1BLEW002.91. The slope of this decrease was estimated at -125.00 cfu/100 ml/year. Remaining stations had no overall trend (Table 2.7). Differences in monthly fecal coliform concentration for stations 1BLEW002.91 (Lewis Creek), 1BMDL001.83

(Middle River), 1BMDL036.08 (Middle River), and 1BSTH041.68 (South River) are indicated in Table 2.8 through Table 2.11. The remaining stations had no seasonality effect. Fecal coliform concentrations in months with the same median group letter are not significantly different from each other at the 95% significance level. For example, in Table 2.8, January, February, and March are in median group "A"; therefore January, February and March are not significantly different from each other.

Station	Mean	Median	Max	Min	SD^1	N^2	Significant Trend ³
1BAKK001.74	944.44	500	3,800	100	1,147.95	9	
1BEDN003.67	1,471.43	600	3,900	100	1,657.02	7	
1BEKR000.25	371.43	200	1,700	100	587.97	7	
1BLEW002.91	2,108.36	1,225	8,000	100	2,275.33	122	-125.00
1BLEW006.95	1,500.00	1,500	2,000	1,000	707.11	2	
1BMDL001.83	782.98	200	8,000	100	1,575.49	119	No Trend
1BMDL026.58	180.00	180	180	180		1	
1BMDL036.08	351.60	100	4,400	100	742.11	125	No Trend
1BMDL047.90	157.14	100	500	100	151.19	7	
1BMDL060.48	1,572.96	568	8,000	25	2,370.90	23	
1BMDL061.07	1,605.39	800	8,000	51	2,024.74	28	
1BMFT001.43	342.86	100	1,600	100	556.35	7	
1BMFT006.20	1,100	200	8,000	100	1,834.53	41	
1BPCD001.03	2,193.83	1,200	8,000	100	2,387.33	82	No Trend
1BPNE000.04	257.14	100	1,100	100	373.53	7	
1BSTH041.68	1,082.52	600	8,000	100	1,640.98	103	No Trend
1BSTH044.90	257.14	200	600	100	207.02	7	

 Table 2.7
 Summary of trend analysis on fecal coliform (cfu/100 ml).

¹SD: standard deviation, ²N: number of sample measurements, ³A number in the significant trend column represents the Seasonal-Kendall estimated slope, "--" insufficient data

Month	Mean (cfu/100 ml)	Minimum (cfu/100 ml)	Maximum (cfu/100ml)	Median Groups	
January	560.00	100	1,500	А	
February	773.64	100	3,600	А	
March	895.00	100	3,100	А	В
April	1,020.46	100	5,100	А	
May	2,460.00	8,000	8,000		В
June	3,320.00	100	8,000		В
July	3,860.00	600	8,000		В
August	3,513.89	625	7,300		В
September	3,301.82	1,250	8,000		В
October	2,362.00	100	8,000	А	В
November	1,885.00	200	8,000	А	В
December	1,616.00	200	8,000	А	В

Table 2.8Summary of Mood Median Test on mean monthly fecal coliform at
1BLEW002.91 on Lewis Creek.

Table 2.9	Summary of Mood Median Test on mean monthly fecal coliform at
	1BMDL001.83 on Middle River.

Month	onth		Maximum (cfu/100ml)	Median	Median Groups	
January	1,155.56	100	5,800		В	
February	145.45	100	300	А	В	
March	170.00	100	700	А		
April	618.18	100	3,500	А	В	
May	1,760.00	100	8,000		В	
June	1,854.55	100	8,000	А	В	
July	908.33	100	5,400	А	В	
August	288.89	100	600	А	В	
September	1,011.11	100	4,900	А	В	
October	544.44	100	1,300	А	В	
November	618.18	100	5,000	А	В	
December	310.00	100	1,200	А	В	

		oo on muuic	MIVCI.			
Month	Mean (cfu/100 ml)	Minimum (cfu/100 ml)	Maximum (cfu/100ml)	Median Groups		
January	800.00	100	4,300		В	
February	125.00	100	400	А		
March	427.78	100	1,950	А	В	
April	127.27	100	300	А		
May	1,570.00	100	4,400		В	
June	236.36	100	1,000	А	В	
July	127.27	100	400	А		
August	187.50	100	500	А	В	
September	236.36	100	1,300	А		
October	170.00	100	700	А		
November	100.00	100	100	А		
December	172.73	100	800	А		

Table 2.10Summary of Mood Median Test on mean monthly fecal coliform at
1BMDL036.08 on Middle River.

Table 2.11	Summary of Mood Median Test on mean monthly fecal coliform at
	1BSTH041.68 on South River.

Month	Mean (cfu/100 ml)	Minimum (cfu/100 ml)	Maximum (cfu/100ml)	Median Groups	
January	660.00	100	1,400	А	В
February	310.00	100	1,800	А	
March	250.00	100	600	А	
April	1,266.67	200	5,100	А	В
May	1,662.50	100	6,000	А	В
June	2,920.00	100	8,000		В
July	922.22	100	1,400	А	В
August	1,200.00	100	2,700		В
September	2,200.00	100	8,000	А	В
October	562.50	100	1,000	А	В
November	444.44	100	2,100	А	В
December	500.00	100	2,100	А	В

3. FECAL COLIFORM SOURCE ASSESSMENT

The TMDL development described in this report includes examination of all potential significant sources of fecal coliform in the Middle and South River watersheds. The source assessment was used as the basis of water quality model development and ultimate analysis of TMDL allocation options. In evaluation of the sources, loads were characterized by the best available information, landowner input, literature values, and local, state, and federal management agencies. This section documents the available information and interpretation for the TMDL analysis. The source assessment chapter is organized into point and nonpoint sections. The representation of the following sources in the model is discussed in Section 4.

3.1 Assessment of Point Sources

Point sources permitted to discharge in the Middle and South River watersheds through the Virginia Pollutant Discharge Elimination System (VPDES) are listed in Table 3.1. Of these point sources, those that are permitted for control of fecal bacteria are shown in Figure 3.1. There are currently no MS4 permitted storm sewer discharges in the watershed. Permitted point discharges that may contain pathogens associated with fecal matter are required to maintain a fecal coliform concentration below 200 cfu/100 ml. One method for achieving this goal is chlorination. Chlorine is added to the discharge stream at levels intended to kill off any pathogens and fecal coliform bacteria. The monitoring method for ensuring the goal is to measure the concentration of total residual chlorine (TRC) in the effluent. If the concentration is high enough, pathogen concentrations, including fecal coliform bacteria concentrations, are considered reduced to acceptable levels. Typically, if minimum TRC levels are met, fecal coliform concentrations are reduced to levels well below the 200 cfu/100 ml limit.

Facility	VPDES #	Receiving Stream	Permitted for Fecal Control
American Safety Razor	VA0002194	Middle River	No
American Safety Razor 002	VA0002194	Middle River	No
Snyder General Corp.	VA0002437	Middle River	Expired
Riverheads High School STP	VA0020427	Christians Creek	Expired
Brookwood STP	VA0022292	Christians Creek	Expired
ACSA-Staunton Plaza STP	VA0022306	Christians Creek	Expired
ACSA; Mt. Sidney, Ft. Defiance STP	VA0022322	Middle River	Yes
Cold Spring Correctional Unit 10	VA0023400	South River	Yes
ACSA-Fishersville STP	VA0025291	Christians Creek	Yes
Staunton WTP	VA0030716	Middle River	Expired
Greenville Car Wash	VA0054771	South River	Expired
Camp Shenandoah STP	VA0060917	Middle River	Yes
ACSA-New Hope STP	VA0062481	Middle River	Yes
Verona STP	VA0064637	Lewis & Middle	Expired
Middle River Regional STP	VA0064793	Middle River	Yes
Charles W. Surface	VA0077640	Lewis Creek	Transferred to VAG401072
ACSA-Churchville WTP	VA0084212	Jennings Branch	Yes
Petroleum Coop-Aug. Co.	VA0086738	Christians Creek	No
ACSA-Verona Water System	VA0088170	Middle River	No
Woodlawn Village M.H. Park	VA0089061	Christians Creek	Yes
Greenville STP	VA0089362	Christians Creek	Transferred to VA0090417
White Way Lunch	VA0089419	Jennings Branch	Expired
Churchville STP	VA0089851	Middle River	Expired
Greenville STP	VA0089851 VA0090417	Christians Creek	Yes
Casta Line Trout Farms	VA0090417 VA0091219	Middle River	No
WNLR Radio Station	VAG401064	Middle River	Yes
Private Residence	VAG401004 VAG401072	Lewis Creek	Yes
Private Residence	VAG401072 VAG401082	Christians Creek	Yes
Private Residence	VAG401082 VAG401195	Christians Creek	Yes
Private Residence	VAG401195 VAG401312	Middle River	Yes
Private Residence	VAG401312 VAG401359	Middle River	Yes
Private Residence	VAG401337	Christians Creek	Yes
Private Residence	VAG401449	Christians Creek	Yes
Private Residence	VAG401449	Middle River	Yes
Private Residence	VAG401498	Middle River	Yes
Weaver's Garage	VAG401004 VAG401882	Poague Run (Lewis	Yes
weaver's Garage	VAU401002	Cr. watershed)	Tes
Victory Worship Center STP	VAG401896	Christians Creek	Yes
Jake's Convenience Store	VAG401890	Bell Creek (Middle	Yes
Jake's Convenience Store	VA0401913	R. watershed)	Tes
Private Residence	VAG401959	Barterbrook Branch	Yes
Thvate Residence	VA0401939	(Christians Cr.	Tes
		(Christians Cr. watershed)	
Private Residence	VAG401960	Barterbrook Branch	Yes
I IIVAIC RESIDENCE	VA0401700	(Christians Cr.	1 65
Amono/Dano's Food Mart	VAC401067	watershed) Christians Creek	Vaa
Amoco/Deno's Food Mart	VAG401967		Yes
Private Residence	VAG401969	Christians Creek	Yes
Private Residence	VAG401979	Poor Farm Draft	Yes
		(Christians Cr.	
		watershed)	

 Table 3.1
 Permitted Point Sources in the Middle and South River Watersheds.

(cont.).				
Facility	VPDES #	DEQ Permit #	Receiving Stream	Permitted for Fecal Control
Royston LLCLofton Plant	VAG401981		Poor Creek (South R. watershed)	Yes
Private Residence	VAG408038		Christians Creek	Yes
Belmont Quarry Company	VAG841010		Lewis Creek	No
Belmont Quarry Company	VAG841010		Christians Creek	No
Luck Stone-Augusta Plant	VAG841015		Middle River	No
Brett Aggregates Inc - Stuarts Draft Plant	VAG841025		Loves Run (South R. watershed)	No
Riverside Plaza Car Wash	VAG750047		Jennings Branch	No
Riverside Plaza Car Wash	VAG751001		Jennings Branch	Expired
Transit Mixed Concrete	VAG110071		Lewis Creek	No
Augusta Block Inc	VAG110073		Lewis Creek	No
Transit Mixed Concrete	VAG111002		Lewis Creek	No
Augusta Block Inc	VAG111011		Lewis Creek	No
Shenandoah Valley Regional Airport	VAR101716	VAR560054	Broad Run (Middle R. watershed)	No
Pilot Travel Center 96	VAR100595	VAR460232	Christians Creek	No
Project #U000-132- 105,C501,B602	VAR100580	VAR460212	Poor Farm Draft (Christians Cr. watershed)	No
Project #0871-007- 317,M502,D686,B697	VAR100583	VAR460217	Folly Mills Creek (Christians Cr. watershed)	No
Project #0728-007-P79,N501	VAR100622	VAR460231	Elk Run (Moffett Cr. watershed)	No
Project #0262-007-101,C502	VAR100570	VAR460154	Lewis Creek	No
Project #0642-007-293,M502 et al	VAR100635	VAR460243	Goose Creek (Christians Cr. watershed)	No
Project #0732-007- 315,M501,D680,D681,D682	VAR100574	VAR460198	Middle River	No
Countryside Development Co LC - Windward Pointe	VAR102392		Meadow Run (Christians Cr. watershed)	No
Disposal Area 1 - VDOT NFO 0262 007 101 C503	VAR101645		Bell Creek (Middle R. watershed)	No
Shields Construction Company	VAR101656		Goose Creek (Christians Cr. watershed)	No
Teaberry Green	VAR101657		Meadow Run (Christians Cr. watershed)	No
Project #0262-007- 101,C504,B610,B611	VAR101702		Bell Creek (Middle R. watershed)	No

Table 3.1Permitted Point Sources in the Middle and South River Watersheds
(cont.).

(cont.).				
Facility	VPDES #	DEQ Permit #	Receiving Stream	Permitted for Fecal Control
Project #0262-007- 101,C503,B609,B614,B615	VAR101703		Lewis Creek	No
VDOT Verona - 0262 007 101 L801	VAR101710		Christians Creek	No
Augusta County Commercial Center - Phase I	VAR101719		Christians Creek	No
Harley Crossing	VAR101725		Christians Creek	No
Mill Place Commerce Park - Phase II	VAR101737		Middle River	No
VDOT Verona - 0635 007 S83 N501	VAR101780		Barterbrook Branch (Christians Cr. watershed)	No
VDOT Verona - 0254 007 105 M600	VAR101778		Buffalo Branch (Middle R. watershed)	No
VDOT Verona - 0616 007 348 M501	VAR101913		Middle River	No
Disposal Area 2 - VDOT NFO 02262 007 101 C503	VAR102097		Lewis Creek	No
Middle River Regional Jail	VAR102801		Middle River	No
Augusta Regional Landfill	VAR051405	VAR560238	Christians Creek	No
FedEx Freight East, IncSTN	VAR051334	VAR560166	Goose Creek (Christians Cr. watershed)	No
Ord's Auto Parts, LLC	VAR051333	VAR560226	Lewis Creek	No
Augusta Block Inc	VAR050778	VAR560082	Lewis Creek	No
OMS #12	VAR050502	VAR560006	Lewis Creek	No
Staunton Metal Recyclers Inc Unifi - Staunton	VAR050504 VAR050823	VAR560091 VAR560075	Lewis Creek Lewis Creek	No No
B & S Contracting Inc - Staunton Plant	VAR050924	VAR560010	Lewis Creek	No
Dixie Gas & Oil Corp Bulk Plant	VAR050826	VAR560080	Lewis Creek	No
Crosby Trucking Service Inc	VAR050788	VAR560005	Middle River	No
McQuay International Inc	VAR050946	VAR560121	Middle River	No

Table 3.1Permitted Point Sources in the Middle and South River Watersheds
(cont.).

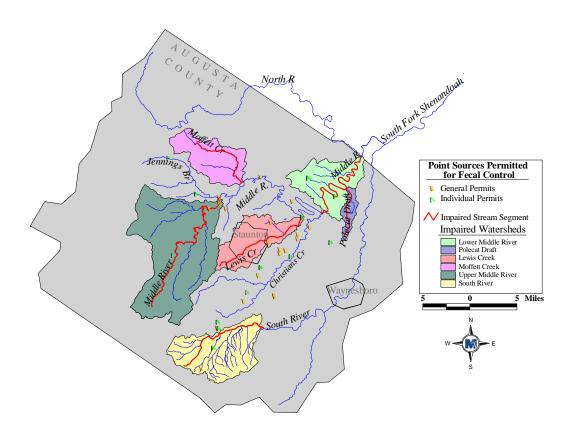


Figure 3.1 Location of VPDES permitted point sources in the Middle and South Rivers watersheds.

3.2 Assessment of Nonpoint Sources

In the Middle and South River watersheds, both urban and rural nonpoint sources of fecal coliform bacteria were considered. Sources include exfiltration and overflows from municipal sewage systems, residential sewage treatment systems, land application of waste (livestock and biosolids), livestock, wildlife, and pets. Sources were identified and enumerated. Where appropriate, spatial distribution of sources throughout the watersheds was also determined.

3.2.1 Private Residential Sewage Treatment

Typical private residential sewage treatment systems (septic systems) consist of a septic tank, distribution box, and a drainage field. Waste from the household flows first to the septic tank, where solids settle out and should be periodically removed by a septic tank pump-out. The liquid portion of the waste (effluent) flows to the distribution box, where it is distributed among several buried absorption trenches consisting of perforated pipes enclosed in beds of gravel. This combination of pipe and trenches comprise the drainage field. Once in the soil, the effluent may potentially flow downward to groundwater, laterally to surface water, and/or upward to the soil surface. Removal of fecal coliform is accomplished primarily by filtration by the soil matrix and die-off during the time between introduction to the septic system and eventual introduction to naturally occurring waters (ground and surface water). Properly designed, installed, and functioning septic systems that are more than 50 feet from a stream are considered to contribute virtually no fecal coliform to surface waters. Reneau (2000) reported that a very small portion of fecal coliform can survive in the soil system for over 50 days. This number might be higher or lower depending on soil moisture, temperature, and physical characteristics such as soil structure and texture.

A septic failure occurs when a drain field has inadequate drainage or a "break", such that effluent flows directly to the soil surface, bypassing travel through the soil profile. In this situation, the effluent is either available to be washed into waterways during runoff events or is directly deposited in-stream due to proximity. A permit from the Virginia Department of Health (VDH) is required for installing or repairing a septic system. VDH personnel were contacted, but had no information regarding the failure rates in Augusta County. A survey of septic pump-out contractors performed by MapTech showed that failures were more likely to occur in the winter to spring months than in the summer to fall months, and that a higher percentage of system failures were reported because of a back-up to the household than because of a failure noticed on the surface of the yard.

Table 3.2 indicates the human population contributing to each impairment, projected to current numbers based on 1990 and 2000 Census data. Due to the aggregation of census data from geographical units developed for the census (*i.e.*, census blocks) to

subwatersheds, some slight errors occurred (*e.g.*, small numbers of homes with sewer service indicated in subwatersheds where no service is available). These slight errors were controlled based on validation with public review and cross-referencing with other data sources (*e.g.*, public service authorities). The number of households that reported in the 1990 Census a system other than sewer or septic are an indicator of the potential number of households depositing sewage directly to the stream. VDH personnel were contacted to provide guidance as to the number of illicit discharges (straight pipes) in the study area, but were hesitant to provide estimates. The population in the Christians Creek drainage is not included in this study, because a fecal bacteria TMDL has already been developed for that area and the loads modeled during that study will be used as input to the current modeling effort.

MapTech sampled waste from septic tank pump-outs and found an average fecal coliform density of 1,040,000 cfu/100 ml. An average fecal coliform density for human waste of 13,000,000 cfu/g was reported by Geldreich (1978) and a total wastewater load of 75 gal/day/person for households utilizing septic systems (VDH 2000), with typical septic tank effluent having fecal coliform concentrations of 10,000 cfu/100 ml (Metcalf and Eddy 1991).

Watershed	Population	Households	Sewer (Homes)	Septic (Homes)	Other (Homes)
Upper Middle River	3,817	1.577	22	1,464	91
Jennings Branch ²	1,695	730	6	689	35
Moffett Creek	1,055	427	2	406	19
Middle River ²	6,753	2,871	1,369	1,442	60
Lewis Creek	24,822	11,075	10,326	680	69
Lower Middle River	2,372	949	375	556	18
Polecat Draft	517	193	17	170	6
TOTAL Middle River	41,030	17,822	12,117	5,408	297
South River	4,528	1,593	161	1,389	43

Table 3.2Estimated human populations by watershed $(2003)^1$.

¹ Disaggregated data from 1990 and 2000 Census projected to 2003.

² Non-impaired areas.

3.2.2 Public Sewage Treatment

Where residents have access to public sewer systems, sewage is collected and transported through a system of pipelines to the treatment facility, where it is treated (*e.g.*, removal of

solids, and chlorination/de-chlorination) and discharged. Fecal bacteria remaining in the waste stream after treatment are accounted for as a point source (Section 3.1). However, failure of the collection system can occur through exfiltration (*e.g.*, leaking sewer lines), or overflows (*e.g.*, capacity of system exceeded due to blockage in line, system malfunction, or infiltration). As indicated in Table 3.2, a significant portion of the population in the impaired drainages is serviced by a public sewage system. Figure 3.2 shows the service area of the public sewer system. These data were used to refine estimated numbers presented in Table 3.2 (*i.e.*, the Upper Middle River, Moffett Creek, Polecat Draft, and South River impairments have no sewer service available). The revised numbers are presented in Table 3.3. Occurrence of exfiltration and overflows were modeled based on density, size, and location of sewer lines, as well as historic records of overflow events.

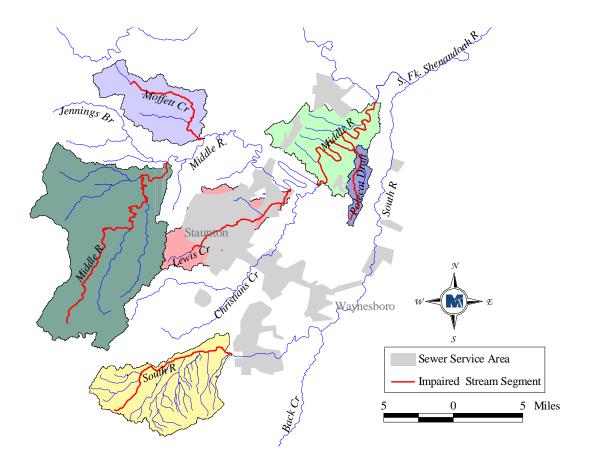


Figure 3.2 Sewer service area in the Middle and South River drainages.

Watershed	Population	Households	Sewer (Homes)	Septic (Homes)	Other (Homes)
Upper Middle River	3,817	1,577	0	1,486	91
Jennings Branch ²	1,695	730	0	695	35
Moffett Creek	1,055	427	0	408	19
Middle River ²	6,753	2,871	1,369	1,442	60
Lewis Creek	24,822	11,075	10,326	680	69
Lower Middle River	2,372	949	375	556	18
Polecat Draft	517	193	0	187	6
TOTAL Middle River	41,030	17,822	12,070	5,454	297
South River	4,528	1,593	0	1,550	43
¹ Disaggregated data from 19	990 and 2000 Censu	s projected to 2003.			

Estimated human populations by watershed (2003)¹, adjusted based Table 3.3 on sewer service area.

² Non-impaired areas.

3.2.3 Livestock

The predominant types of livestock in the Middle and South River watersheds are poultry (chickens and turkeys), beef and dairy cattle, sheep, and horses, although all types of livestock identified were considered in modeling the watershed. Animal populations were based on communication with Virginia Cooperative Extension Service (VCE), Natural Resources Conservation Service (NRCS), Headwaters Soil and Water Conservation District (HSWCD), VADCR, watershed visits, verbal communication with farmers, and review of all publicly available information on animal type and approximate numbers known to exist within Augusta County and the TMDL project areas. Table 3.4 and Table 3.5 give estimates of livestock and poultry populations, respectively, in the Middle and South River watersheds. The population in the Christians Creek drainage is not included in this study, because a fecal bacteria TMDL has already been developed for this area and the loads modeled during this effort will be used as input to the current modeling effort. Values of fecal coliform density for livestock sources were based on sampling performed by MapTech. Reported manure production rates for livestock were taken from ASAE, 1998. A summary of fecal coliform density values and manure production rates is presented in Table 3.6.

Beef	Dairy				
Cattle	Cattle	Horse	Swine	Sheep	Goat
9,591	1,700	649	80	1,000	0
1,090	0	112	0	172	0
1,016	1,090	164	0	253	0
3,305	967	402	0	620	22
220	756	213	0	629	0
4,160	1,096	277	0	426	0
716	188	48	0	73	0
20,098	5,797	1,865	80	3,172	22
3,291	415	228	0	351	30
	Cattle 9,591 1,090 1,016 3,305 220 4,160 716 20,098	CattleCattle9,5911,7001,09001,0161,0903,3059672207564,1601,09671618820,0985,797	CattleCattleHorse9,5911,7006491,09001121,0161,0901643,3059674022207562134,1601,0962777161884820,0985,7971,865	CattleCattleHorseSwine9,5911,700649801,090011201,0161,09016403,305967402022075621304,1601,096277071618848020,0985,7971,86580	CattleCattleHorseSwineSheep9,5911,700649801,0001,090011201721,0161,09016402533,305967402062022075621306294,1601,09627704267161884807320,0985,7971,865803,172

Table 3.4Estimated livestock populations in the Middle and South River
watersheds.

¹ Non-impaired areas

			Turkey:	Finished	Finished	2-Stage
Watershed	Broilers	Pullets	Breeders	Hens	Toms	Toms
Upper Middle River	0	0	15,000	522,800	19,500	0
Jennings Branch ¹	672,000	0	0	160,000	0	672,000
Moffett Creek	336,000	0	31,700	225,600	222,000	336,000
Middle River ¹	312,000	224,000	0	108,800	0	312,000
Lewis Creek	0	0	0	91,200	0	0
Lower Middle River	1,389,000	0	0	624,000	225,000	1,389,000
Polecat Draft	504,000	0	0	0	25,500	504,000
TOTAL Middle River	3,213,000	224,000	46,700	1,732,400	492,000	3,213,000
South River	0	0	20000	291200	0	0
¹ Non-impaired areas						

Table 3.5Estimated poultry populations in the Middle and South River
watersheds (total birds per year).

Table 3.6Average fecal coliform densities and waste loads associated with
livestock and poultry.

investock and pould y.		
Туре	Waste Load (lb/d/an)	FC Density (cfu/g)
D_{airre} (1.400 lb)	· · ·	
Dairy (1,400 lb)	120.4	258,000
Beef (800 lb)	46.4	101,000
Horse (1,000 lb)	51.0	94,000
Swine (135 lb)	11.3	400,000
Swine Lagoon	N/A	95,300 ¹
Sheep (60 lb)	2.4	43,000
Goat (140 lb)	5.7	15,500
Dairy Separator	N/A	$32,000^{1}$
Dairy Storage Pit	N/A	$1,200^{1}$
Layer	0.26	586,000
Broiler	0.17	586,000
Pullet	0.34	586,000
Turkey Breeder	2.00	289,000
Finished Hen	0.71	289,000
Finished Tom	1.18	289,000
2-stage Tom	0.39	289,000
Brood to Move	0.30	289,000

¹Units are cfu/100ml.

Fecal coliform produced by livestock can enter surface waters through four pathways. First, waste produced by animals in confinement is typically collected, stored, and applied to the landscape (*e.g.*, pasture and cropland), where it is available for wash-off during a runoff-producing rainfall event. Second, grazing livestock deposit manure

directly on the land, where it is available for wash-off during a runoff-producing rainfall event. Third, livestock with access to streams occasionally deposit manure directly in streams. Fourth, some animal confinement facilities have illegal drainage systems that divert wash-water and waste directly to drainage ways or streams.

Poultry is one of the major livestock commodities in the Middle and South Rivers watersheds and poultry litter is a primary source of land-applied livestock waste. Timing of applications throughout the year was based on data reported by SWCD, NRCS, VADCR, and VCE personnel (Table 3.7). All grazing livestock were expected to deposit some portion of waste on pasture land areas. The percentage of time spent on pasture for dairy and beef cattle was reported by SWCD, NRCS, VADCR, and VCE personnel (Table 3.8 through Table 3.10). Horses, sheep, beef cattle and goats were assumed to be in pasture 100% of the time. The average amount of time spent by dairy and beef cattle in stream access areas (*i.e.*, within 100 feet of the stream) for each month is given in Table 3.8 through Table 3.10.

	un oughout yeur	•		
Month	A	Applied % of Total		Landuse
	Beef and Swine	Dairy	Poultry	
January	0.00	0.00	0.00	Cropland
February	0.00	0.00	0.00	Cropland
March	15.00	10.00	20.00	Cropland
April	20.00	20.00	20.00	Cropland
May	20.00	20.00	7.50	Cropland
June	0.00	0.00	7.50	Pasture
July	2.50	2.50	7.50	Pasture
August	2.50	2.50	7.50	Pasture
September	15.00	15.00	15.00	Cropland
October	20.00	25.00	15.00	Cropland
November	5.00	5.00	0.00	Cropland
December	0.00	0.00	0.00	Cropland

Table 3.7Estimated average percentage of collected livestock waste applied
throughout year.

P	a uug.		
Month	Pasture	Stream	Loafing Lot
	(hr)	(hr)	(hr)
January	2.54	0.06	21.4
February	2.54	0.06	21.4
March	3.71	0.09	20.2
April	5.71	0.09	18.2
May	6.61	0.09	17.3
June	7.18	0.12	16.7
July	7.88	0.12	16
August	7.88	0.12	16
September	7.91	0.09	16
October	7.51	0.09	16.4
November	6.61	0.09	17.3
December	4.84	0.06	19.1

Table 3.8Estimated average time dairy milking cows spend in different areas
per day.

Table 3.9	Estimated average time dry cows and replacement heifers spend in
	different areas per day.

Month	Pasture	Stream	Loafing Lot
	(hr)	(hr)	(hr)
January	23.79	0.21	0
February	23.79	0.21	0
March	23.58	0.42	0
April	23.34	0.66	0
May	23.34	0.66	0
June	23.13	0.87	0
July	23.13	0.87	0
August	23.13	0.87	0
September	23.34	0.66	0
October	23.58	0.42	0
November	23.58	0.42	0
December	23.79	0.21	0

	0	-	L V
Month	Pasture	Stream	Feed Lot
	(hr)	(hr)	(hr)
January	23.79	0.21	0
February	23.79	0.21	0
March	23.70	0.30	0
April	23.58	0.42	0
May	23.58	0.42	0
June	23.49	0.51	0
July	23.49	0.51	0
August	23.49	0.51	0
September	23.58	0.42	0
October	23.70	0.30	0
November	23.70	0.30	0
December	23.79	0.21	0

 Table 3.10
 Estimated average time beef cows spend in different areas per day.

3.2.4 Biosolids

The rate of biosolids application in the Middle and South River watersheds is relatively small. The four sources include the Augusta County Service Authority--Fishersville (ACSA-F), the Augusta County Service Authority—Middle River (ACSA-MR), the Harrisonburg Service Authority (HRRSA), and Hershey Chocolate-Stuarts Draft (HC-SD). Table 3.11 shows the amount of biosolids produced and distributed in the affected watersheds by source and year. Table 3.12 shows acreages permitted for biosolids application and the actual application information. The sensitivity analysis for this study will include modeling application of the maximum permitted level on permitted sites in the watershed.

wat	ci silcus.			
Source	2000	2001	2002	
ACSA-F		80		
ACSA-MR	107	326	172	
HRRSA		164	134	
HERSHEY	55	67	36	
TOTAL	162	636	342	

Table 3.11Sources of biosolids spread (dry tons) in the Middle and South River
watersheds.

by impairment area in the Middle and South River watersneds.			River watersneus.
Impairment	Acres Permitted	Acres Applied (2000-2002)	Dry Tons Applied (2000-2002)
Upper Middle	0.0	0.0	0.0
Moffett Creek	0.0	0.0	0.0
Lewis Creek	0.0	0.0	0.0
Polecat Draft	0.0	0.0	0.0
Lower Middle	528.3	26.4	415
South River	192.7	89.2	725

Table 3.12Acreages permitted for biosolids applications and actual applications
by impairment area in the Middle and South River watersheds.

3.2.5 Wildlife

The predominant wildlife species in the watershed were determined through consultation with wildlife biologists from the Virginia Department of Game and Inland Fisheries (VDGIF), citizens from the watershed, source sampling, and site visits. Population densities were provided by VDGIF and are listed in Table 3.13. The estimated numbers of animals in the Middle and South River watersheds are reported in Table 3.14. Habitat and seasonal food preferences were determined based on information obtained from The Fire Effects Information System (1999) and VDGIF (Costanzo, 2002; Norman, 1999; Rose and Cranford, 1987; and VDGIF, 1999). Waste loads were comprised from literature values and discussion with VDGIF personnel (ASAE, 1998; Costanzo, 2002; Weiskel et al., 1996, and Yagow, 1999). Table 3.15 summarizes the habitat and fecal production information that was obtained. Where available, fecal coliform densities were based on wildlife waste sampling performed by MapTech. The fecal coliform density of beaver waste was taken from sampling done for the Mountain Run TMDL development (Yagow, 1999). Percentage of waste directly deposited to streams was based on habitat information and location of feces during source sampling for other projects. Fecal coliform densities and estimated percentages of time spent in stream access areas (i.e., within 100 feet of stream) are reported in Table 3.16.

Wildlife	Augusta County Density	Density Unit
Raccoon	0.0703	an/ac of habitat
Muskrat	2.75	an/ac of habitat
Beaver	4.8	an/mi of stream
Deer	0.033	an/ac of habitat
Turkey	0.008	an/ac of forest
Goose	0.003	an/ac
Duck	0.007	an/ac

Table 3.13Wildlife population density.

Table 3.14	Estimated wildlife populations in the Middle and South River
	watersheds.

Watershed	Deer	Turkey	Goose	Duck	Muskrat	Raccoon	Beaver
Upper Middle River	1,913	213	176	1,027	4,005	856	299
Jennings Branch ¹	740	136	60	131	1,700	379	116
Moffett Creek	555	69	51	296	1,207	258	79
Middle River ¹	984	82	94	203	2,612	560	142
Lewis Creek	465	35	53	116	1,272	286	58
Lower Middle River	620	26	58	125	1,832	401	111
Polecat Draft	115	8	11	23	376	87	0
TOTAL Middle River	5,392	569	503	1,921	13,004	2,827	805
South River	835	112	244	492	2,473	511	230
¹ Non-impaired areas							

FECAL COLIFORM SOURCE ASSESSMENT

Animal	Waste Load (g/an-day)	Habitat
Raccoon	450	Primary = region within 600 ft of continuous streams
Kaccoon	450	Infrequent = region between 601 and 7,920 ft from continuous streams
Muskrat	100	Primary = region within 66 ft from continuous streams
WIUSKIA	100	Less frequent = region between 67 and 308 ft
Beaver ¹	200	Continuous stream below 500 ft elevation (defined as distance in feet)
		Primary = forested, harvested forest land, orchards, grazed woodland, open urban, cropland, pasture
Deer	772	Infrequent = low density residential, medium density residential
		Seldom/None = rest of landuse codes
		Primary = forested, harvested forest land, grazed woodland
Turkey ²	320	Infrequent = open urban, orchards, cropland, pasture
		Seldom/None = Rest of landuse codes
		Primary = region within 0-66 ft from ponds
Goose ³	225	and continuous streams
		Infrequent = region between 67 and 308 ft from ponds
		and continuous streams
		Primary = region within 0-66 ft from ponds
Duck	150	and continuous streams
		Infrequent = region between 67 and 308 ft from ponds and continuous streams

Wildlife fecal production rates and habitat. **Table 3.15**

2

Waste load for domestic turkey (ASAE, 1998). Goose waste load was calculated as 50% greater than that of duck, based on field observations and conversation with Gary 3 Costanzo (Costanzo, 2000).

Table 3.16	Average fecal coliform densities and estimated percentage of fecal
	matter directly deposited in stream for wildlife.

Animal Type	Fecal Coliform Density	Portion of Day in Stream Access Areas
	(cfu/g)	(%)
Raccoon	2,100,000	0.25
Muskrat	1,900,000	4.5
Beaver	1,000	100
Deer	380,000	.007
Turkey	1,332	.007
Goose	250,000	2.5
Duck	3,500	3.75

3.2.6 Pets

Among pets, cats and dogs are the predominant contributors of fecal coliform in the watershed and were the only pets considered in this analysis. Dog waste load was reported by Weiskel et al. (1996), while cat waste load was measured during the Blackwater River TMDL study conducted by MapTech. Fecal coliform density for dogs and cats was measured from samples collected throughout Virginia by MapTech. A summary of the data collected is given in Table 3.17. Table 3.18 lists the domestic animal populations for the six impairments.

Table 3.17	Domestic animal population density, waste load, and fecal coliform
	density.

Туре	Population Density (an/house)	Waste load (g/an-day)	FC Density (cfu/g)
Dog	0.534	450	480,000
Cat	0.598	19.4	9

Table 3.18Estimated domestic animal populations in the Middle and South
Rivers watersheds.

Dog	Cat
842	943
390	437
228	255
1,533	1,717
5,914	6,623
507	568
103	115
9,517	10,658
851	953
	842 390 228 1,533 5,914 507 103 9,517

4. MODELING PROCEDURE: LINKING THE SOURCES TO THE ENDPOINT

Establishing the relationship between in-stream water quality and the source loadings is a critical component of TMDL development. It allows for the evaluation of management options that will achieve the desired water quality endpoint. In the development of TMDLs for the Middle and Upper South River watersheds, the relationship was defined through computer modeling based on data collected throughout the study area. Monitored flow and water quality data were then used to verify that the relationships developed through modeling were accurate. In this section, the selection of modeling tools, parameter development, calibration/validation, and model application are discussed.

4.1 Modeling Framework Selection

The USGS Hydrologic Simulation Program - Fortran (HSPF) water quality model was selected as the modeling framework to simulate existing conditions and to perform TMDL allocations. The HSPF model is a continuous simulation model that can account for NPS pollutants in runoff, as well as pollutants entering the flow channel from point sources. In establishing the existing and allocation conditions, seasonal variations in hydrology, climatic conditions, and watershed activities were explicitly accounted for in the model. The use of HSPF allowed consideration of seasonal aspects of precipitation patterns within the watershed.

The HSPF model simulates a watershed by dividing it up into a network of stream segments (referred to in the model as RCHRES), impervious land areas (IMPLND) and pervious land areas (PERLND). Each subwatershed contains a single RCHRES, modeled as an open channel, and numerous PERLNDs and IMPLNDs, representing the various landuses in that subwatershed. Water and pollutants from the land segments in a given subwatershed flow into the RCHRES in that subwatershed. Point discharges and withdrawals of water and pollutants are simulated as flowing directly to or withdrawing from a particular RCHRES as well. Water and pollutants from a given RCHRES flow

into the next downstream RCHRES. The network of RCHRESs is constructed to mirror the configuration of the stream segments found in the physical world. Therefore, activities simulated in one impaired stream segment affect the water quality downstream in the model.

4.2 Model Setup

To adequately represent the spatial variation in the watershed, the Middle and Upper South River drainage areas were divided into forty-eight subwatersheds (Figure 4.1). The rationale for choosing these subwatersheds was based on the availability of water quality data and the limitations of the HSPF model. Water quality data (*i.e.*, fecal coliform concentrations) are available at specific locations throughout the watershed. Subwatershed outlets were chosen to coincide with these monitoring stations, since output from the model can only be obtained at the modeled subwatershed outlets (Figure 4.1 and Table 4.1). The HSPF model requires that the travel time through any RCHRES be greater than the time-step being used for the model. Given this modeling constraint and the desire to maintain a spatial distribution of watershed characteristics and associated parameters, a 30-minute modeling time-step was determined to be required. The spatial division of the watershed allowed for a more refined representation of pollutant sources, and a more realistic description of hydrologic factors in the watershed.

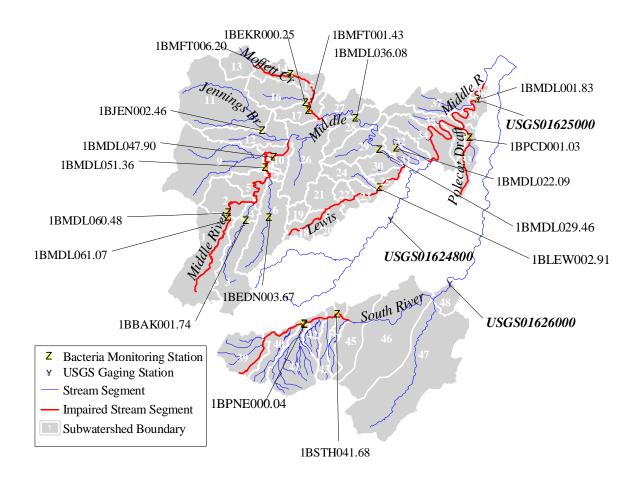


Figure 4.1 Subwatersheds delineated for modeling and location of VADEQ water quality monitoring stations and USGS Gaging Stations in the Middle and Upper South River watersheds.

	11
Station Number	Reach Number
1BMDL061.07	1
1BMDL060.48	2
1BBAK001.74	3
1BEDN003.67	6
1BMDL051.36	7
1BMDL047.90	10
1BJEN002.46	11
1BMFT006.20	14
1BEKR000.25	16
1BMFT001.43	17
1BLEW002.91	23
1BMDL036.08	27
1BMDL022.09	31
1BPCD001.03	33
1BMDL001.83	36
1BPNE000.04	41
1BSTH044.90	40
1BSTH041.68	43

Table 4.1VADEQ monitoring stations and corresponding reaches in the Middle
and Upper South River watersheds.

Using the VADCR-provided landuse data layer, described in section 1.1, twenty-two landuse types were identified in the watershed. The twenty-two landuse types were consolidated into 10 categories based on similarities in hydrologic and waste application/production features (Table 4.2). Within each subwatershed, up to the ten landuse categories were represented. Each landuse had parameters associated with it that described the hydrology of the area (*e.g.*, average slope length) and the behavior of pollutants (*e.g.*, fecal coliform accumulation rate). Table 4.3 shows the consolidated landuse types and the area existing in each impairment. These landuse types are represented in HSPF as PERLNDs and IMPLNDs. Impervious areas in the watershed are represented in two IMPLND types, while there are ten PERLND types, each with parameters describing a particular landuse (Table 4.2). Some IMPLND and PERLND parameters (*e.g.*, slope length) vary with the particular subwatershed in which they are located. Others vary with season (*e.g.*, upper zone storage) to account for plant growth, die-off, and removal.

TMDL Landuse Categories	Pervious / Impervious (Percentage)	VADCR Landuse Classifications
Water	Impervious (100%)	Open Water
Residential	Pervious (93%)	Low Intensity Residential
	Impervious (7%)	Open Urban Land
		Medium Intensity Residential
		Mobile Home Park
		Wooded Residential
Commercial and Services	Pervious (93%)	Commercial and services
	Impervious (7%)	Industrial Transportation
		Mixed Urban or Built-Land
		Barren
Woodland	Pervious (100%)	Forested
		Orchards
		Harvested Forest Land
Unimproved Pasture	Pervious (100%)	Unimproved Pasture
		Grazed Woodland
Improved Pasture	Pervious (100%)	Improved Pasture
Cropland	Pervious (100%)	Cropland
Livestock Access	Pervious (100%)	Pasture/bordering streams
Livestock Operations	Pervious (100%)	Cattle Operations
		Poultry Operations
		Other Feeding Operations
Farmstead	Pervious (100%)	Farmstead

Table 4.2Consolidation of MRLC landuse categories for the Middle and South
River watersheds.

Table 4.5 Spatia	a distribution of fair	uuse types in the	Mildule and Op	per south K	iver urainage a	ll cas.
Landuse	Upper Middle River	Moffett Creek	Lewis Creek	Polecat Draft	Lower Middle River	Upper South River
	Acreage	Acreage	Acreage	Acreage	Acreage	Acreage
Water	54	0	27	0	27	109
Residential	263	64	2,706	0	272	708
Commercial & Services	64	9	781	0	145	499
Woodland	26,786	8,690	4,531	1,081	3,396	13,847
Unimproved Pasture	999	699	64	0	218	209
Improved Pasture	26,341	6,111	8,907	1,970	11,541	9,298
Cropland	2,497	763	390	327	2,924	1,208
Livestock Access	1,407	463	463	136	481	581
Livestock Operations	73	82	0	18	73	45
Farmstead	191	118	64	9	227	173

Table 4.3 Spatial distribution of landuse types in the Middle and Upper South River drainage areas.

TMDL Development

Die-off of fecal coliform can be handled implicitly or explicitly. For land-applied fecal matter (mechanically applied and deposited directly), die-off was addressed implicitly through monitoring and modeling. Samples of collected waste prior to land application (*i.e.*, dairy waste from loafing areas) were collected and analyzed by MapTech. Therefore, die-off is implicitly accounted for through the sample analysis. Die-off occurring in the field was represented implicitly through model parameters such as the maximum accumulation and the 90% wash off rate, which were adjusted during the calibration of the model. These parameters were assumed to represent not only the delivery mechanisms, but the bacteria die-off as well. Once the fecal coliform entered the stream, the general decay module of HSPF was incorporated, thereby explicitly addressing the die-off rate. The general decay module uses a first order decay function to simulate die-off.

4.3 Source Representation

Both point and nonpoint sources can be represented in the model. In general, point sources are added to the model as a time-series of pollutant and flow inputs to the stream. Land-based nonpoint sources are represented as an accumulation of pollutants on land, where some portion is available for transport in runoff. The amount of accumulation and availability for transport vary with landuse type and season. The model allows for a maximum accumulation to be specified. The maximum accumulation was adjusted seasonally to account for changes in die-off rates, which are dependent on temperature and moisture conditions. Some nonpoint sources, rather than being land-based, are represented as being deposited directly to the stream (*e.g.*, animal defecation in stream). These sources are modeled similarly to point sources, as they do not require a runoff event for delivery to the stream. These sources are primarily due to animal activity, which varies with the time of day. Direct depositions by nocturnal animals were modeled as being deposited from 6:00 PM to 6:00 AM, and direct depositions by diurnal animals were modeled as being deposited from 6:00 AM to 6:00 PM. Once in stream, die-off is represented by a first-order exponential equation.

Much of the data used to develop the model inputs for modeling water quality is timedependent (*e.g.*, population). Depending on the timeframe of the simulation being run, different numbers should be used. Data representing 1995 were used for the water quality calibration and validation period (1992-2002). Data representing 2003 were used for the allocation runs in order to represent current conditions. Additionally, data projected to 2008 were analyzed to assess the impact of changing populations.

4.3.1 Point Sources

For permitted point dischargers, design flow capacities were used for allocation runs. This flow rate was combined with a fecal coliform concentration of 200 cfu/100 ml, where discharges were permitted for fecal control, to ensure that compliance with state water quality standards could be met even if permitted loads were at maximum levels. For calibration and current condition runs, a lower value of fecal coliform concentration was used, based upon a regression analysis relating Total Residual Chlorine (TRC) levels and fecal coliform concentrations (VADEQ/VADCR, 2000). Nonpoint sources of pollution that were not driven by runoff (*e.g.*, direct deposition of fecal matter to the the stream by wildlife) were modeled similarly to point sources. These sources, as well as land-based sources, are identified in the following sections.

4.3.2 Private Residential Sewage Treatment

The number of septic systems in the subwatersheds modeled for the Middle and Upper South River watersheds was calculated by overlaying U.S. Census Bureau data (USCB, 1990; USCB, 2000) with the watershed to enumerate the septic systems. Households were then distributed among residential and farmstead landuse types. Septic divisions between residential and farmstead were based on GIS analysis. Each landuse area was assigned a number of septic systems based on census data. A total of 5,901 septic systems were estimated in the Middle and Upper South River watersheds in 1995. During allocation runs, the number of households was projected to 2003, based on current Augusta County growth rates (USCB, 2000) resulting in 7,082 septic systems (Table 4.4). The number of septic systems was projected to increase to 7,820 by 2008.

Impaired Segment	Total Septic Systems	Failing Septic Systems	Straight Pipes
Upper Middle River	1,540	345	16
Jennings Branch [*]	715	166	9
Moffett Creek	421	87	3
Middle River [*]	1,493	359	9
Lewis Creek	744	192	6
Polecat Draft	175	40	1
Lower Middle River	572	140	2
South River	1,423	289	9
TOTAL	7,082	1,617	55

Table 4.4Estimated failing septic systems (2003).

^{*}non-impaired watersheds

4.3.2.1 Failing Septic Systems

Failing septic systems were assumed to deliver all effluent to the soil surface where it was available for wash-off during a runoff event. In accordance with estimates from Raymond B. Reneau, Jr. of the Crop and Soil Environmental Sciences Department at Virginia Tech, a 40% failure rate for systems designed and installed prior to 1964, a 20% failure rate for systems designed and installed between 1964 and 1984, and a 5% failure rate on all systems designed and installed after 1984 was used in development of the TMDLs for the Middle and Upper South River watersheds. Total septic systems in each category were calculated using U.S. Census Bureau block demographics. The applicable failure rate was multiplied by each total and summed to get the total failed septic systems per subwatershed. The fecal coliform density for septic system effluent was multiplied by the average design load for the septic systems in the subwatershed to determine the total load from each failing system. Additionally, the loads were distributed seasonally based on a survey of septic pump-out contractors (VADEQ/VADCR, 2000) to account for more frequent failures during wet months.

4.3.2.2 Uncontrolled Discharges

Uncontrolled discharges were estimated using 1990 U.S. Census Bureau block demographics. Houses listed in the Census sewage disposal category "other means" were assumed to be disposing of sewage via uncontrolled discharges if located within 200 feet of a stream. Corresponding block data and subwatershed boundaries were intersected to

determine an estimate of uncontrolled discharges in each subwatershed. A 200-foot buffer was created from the stream segments. The corresponding buffer and subwatershed areas were intersected resulting in uncontrolled discharges within 200 feet of the stream per subwatershed. Fecal coliform loads for each discharge were calculated based on the fecal density of human waste and the waste load for the average size household in the subwatershed. The loadings from uncontrolled discharges were applied directly to the stream in the same manner that point sources are handled in the model.

4.3.2.3 Sewer System Overflows

During the model calibration/validation period, October 1992 to September 2002, there were 25 reported sewer overflows, leading to a significant input of fecal bacteria into the watershed. It was assumed that additional occurrences of sewer overflows were likely undetected, and a procedure was determined to estimate the quantity of unreported overflows. Overflows were considered to occur during sufficiently wet periods, as based on the average rainfall over a three day period encompassing a reported overflow event. Additional three day wet periods exceeding this average value were considered to contain an unreported sewer overflow. The concentration of fecal bacteria discharged was considered to be equivalent to the concentration of septic tank effluent, and the magnitude of the discharge was estimated as the average discharge volume of reported sewer overflow events. This estimate of concentration is conservative because some biodegradation occurs in a septic system.

4.3.3 Livestock

Fecal coliform produced by livestock can enter surface waters through four pathways: land application of stored waste, deposition on land, direct deposition to streams, and diversion of wash-water and waste directly to streams. Each of these pathways is accounted for in the model. The number of fecal coliform directed through each pathway was calculated by multiplying the fecal coliform density with the amount of waste expected through that pathway. Livestock numbers determined for 2003 were used for the allocation runs, while these numbers were projected back to 1995 for the calibration and validation runs. The numbers are based on data provided by HSWCD, and NRCS, as

well as taking into account growth rates in Augusta County (as determined from data reported by the Virginia Agricultural Statistics Service -- VASS, 1995 and VASS, 2003). Similarly, when growth was analyzed, livestock numbers were projected to 2008. For land-applied waste, the fecal coliform density measured from stored waste was used, while the density in as-excreted manure was used to calculate the load for deposition on land and to streams (Table 3.7). The use of fecal coliform densities measured in stored manure accounts for any die-off that occurs in storage. The modeling of fecal coliform entering the stream through diversion of wash-water was accounted for by the direct deposition of fecal matter to streams by cattle.

4.3.3.1 Land Application of Collected Manure

Significant collection of livestock manure occurs on dairy farms. For dairy farms in the drainage area, the average daily waste production per month was calculated using the number of animal units, weight of animal, and waste production rate as reported in Section 3.2.2. The amount of waste collected was first based on proportion of milking cows, as the milking herd represented the only cows subject to confinement and, therefore, waste collection. Second, the total amount of waste produced in confinement was calculated based on the proportion of time spent in confinement. Finally, values for the percentage of loafing lot waste collected were used to calculate the amount of waste available to be spread on pasture and cropland (Table 3.8). Stored waste was spread on pastureland. It was assumed that 100% of land-applied waste is available for transport in surface runoff transport unless the waste is incorporated in the soil by plowing during seedbed preparation. Percentage of cropland plowed and amount of waste incorporated was adjusted using calibration for the months of planting.

4.3.3.2 Deposition on Land

For cattle, the amount of waste deposited on land per day was a proportion of the total waste produced per day. The proportion was calculated based on the study entitled "Modeling Cattle Stream Access" conducted by the Biological Systems Engineering Department at Virginia Tech and MapTech, Inc. for VADCR. The proportion was based

on the amount of time spent in pasture, but not in close proximity to accessible streams, and was calculated as follows:

Proportion = [(24 hr) - (time in confinement) - (time in stream access areas)]/(24 hr)

All other livestock (horse and goat) were assumed to deposit all feces on pasture. The total amount of fecal matter deposited on the pasture land-use type was area-weighted.

4.3.3.3 Direct Deposition to Streams

Beef and dairy cattle are the primary sources of direct deposition by livestock in the Middle and Upper South River watersheds. The amount of waste deposited in streams each day was a proportion of the total waste produced per day by cattle. First, the proportion of manure deposited in "stream access" areas was calculated based on the "Modeling Cattle Stream Access" study. The proportion was calculated as follows:

Proportion = (time in stream access areas)/(24 hr)

For the waste produced on the "stream access" landuse, 30% of the waste was modeled as being directly deposited in the stream and 70% remained on the land segment adjacent to the stream. The 70% remaining was treated as manure deposited on land. However, applying it in a separate land-use area (stream access) allows the model to consider the proximity of the deposition to the stream. The 30% that was directly deposited to the stream was modeled in the same way that point sources are handled in the model.

4.3.4 Biosolids

Investigation of VDH data indicated that biosolids applications have occurred within the Middle and Upper South River watersheds. Applications occurred only in the Lower Middle and Upper South River impairments. For model calibration (Section 4.7 of this document), biosolids were modeled at the average reported load, and average fecal coliform density. With urban populations growing, the disposal of biosolids will take on increasing importance. Class B biosolids have been measured with 68,467 cfu/g-dry and are permitted to contain up to 1,995,262 cfu/g-dry, as compared with approximately 240

cfu/g-dry for dairy waste. The sensitivity analysis (Section 4.6 of this document) provided insight into the effects that increased applications of biosolids could have on water quality. During allocation runs, biosolids applications were modeled at the highest permittable loading rate (*i.e.*, 15 dry tons/ac at 1,995,262 cfu/g) applied to all permitted acreages in the month of May each year.

4.3.5 Wildlife

For each species, a GIS habitat layer was developed based on the habitat descriptions that were obtained (Section 3.2.5). An example of one of these layers is shown in Figure 4.2. This layer was overlaid with the landuse layer and the resulting area was calculated for each landuse in each subwatershed. The number of animals per land segment was determined by multiplying the area by the population density. Fecal coliform loads for each land segment were calculated by multiplying the waste load, fecal coliform densities, and number of animals for each species.

Seasonal distribution of waste was determined using seasonal food preferences for deer and turkey. Goose and duck populations were varied based on migration patterns, but the load available for delivery to the stream was never reduced below 40% of the maximum to account for the resident population of birds. No seasonal variation was assumed for the remaining species. For each species, a portion of the total waste load was considered to be land-based, with the remaining portion being directly deposited to streams. The portion being deposited to streams was based on the amount of time spent in stream access areas (Table 3.15). It was estimated, for all animals other than beaver, that 5% of fecal matter produced while in stream access areas was directly deposited to the stream. For beaver, it was estimated that 100% of fecal matter would be directly deposited to streams. No long-term (1995–2008) projections were made to wildlife populations, as there was no available data to support such adjustments.

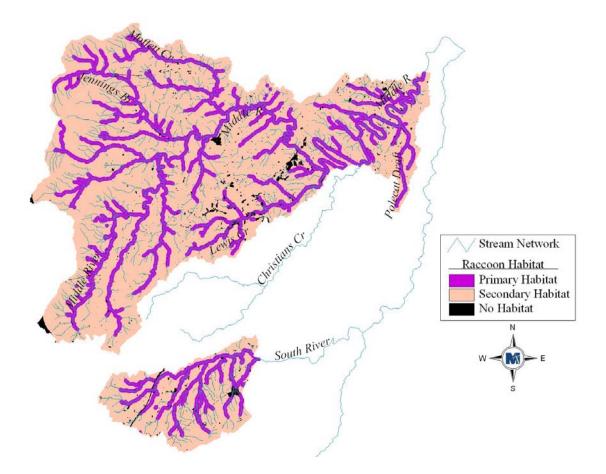


Figure 4.2 Example of raccoon habitat layer developed by MapTech in the Middle River watershed.

4.3.6 Pets

Cats and dogs were the only pets considered in this analysis. Population density (animals/house), waste load, and fecal coliform density are reported in Section 3.2.6. Waste from pets was distributed in the low and high residential landuses. The locations of households were taken from the 1990 and 2000 Census (USCB, 1990, 2000). The landuse and household layers were overlaid, which resulted in number of households per landuse. The number of animals per landuse was determined by multiplying the number of households by the population density. The amount of fecal coliform deposited daily by pets in each landuse segment was calculated by multiplying the waste load, fecal coliform density, and number of animals for both cats and dogs. The waste load was

assumed not to vary seasonally. The populations of cats and dogs were projected from 1990 data to 1995, 2003, and 2008 based on housing growth rates.

4.4 Stream Characteristics

HSPF requires that each stream reach be represented by constant characteristics (*e.g.*, stream geometry and resistance to flow). A representative stream profile for each cross-section was developed and consisted of a trapezoidal channel with pitch breaks at the beginning of the flood plain (Figure 4.3). With this approach, the flood plain can be represented differently from the streambed.

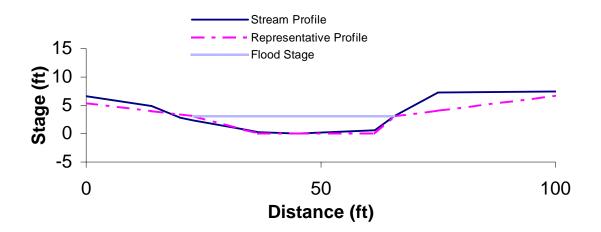


Figure 4.3 Stream profile representation in HSPF.

These data were used to derive the Hydraulic Function Tables (F-tables) used by the HSPF model (Table 4.5). The F-tables developed consist of four columns: depth (ft), area (ac), volume (ac-ft), and outflow (ft³/s). The depth represents the possible range of flow, with a maximum value beyond what would be expected for the reach. The area listed is the surface area of the flow in acres. The volume corresponds to the total volume of the flow in the reach, and is reported in acre-feet. The outflow is simply the stream discharge, in cubic feet per second.

Depth (ft)	Area	Volume	Outflow		
	(ac)	(ac-ft)	(ft ³ /s)		
0.0	0.00	0.00	0.00		
0.2	21.96	4.37	10.87		
0.4	22.16	8.78	34.54		
0.6	22.36	13.23	67.92		
0.8	22.56	17.73	109.75		
1.0	22.77	22.26	159.29		
1.3	23.07	29.14	246.88		
1.7	23.48	38.44	386.59		
2.0	23.78	45.53	507.43		
2.3	24.08	52.71	641.30		
2.7	24.49	62.43	839.20		
3.0	24.79	69.82	1,001.68		
6.0	29.42	149.62	3,222.35		
9.0	37.08	249.37	6,254.60		
12.0	44.73	372.08	10,078.05		
15.0	52.38	517.75	14,818.37		
25.0	77.32	1,163.48	38,629.43		
50.0	92.02	2,796.19	103,246.75		

Table 4.5Example of an "F-table" calculated for the HSPF model.

4.5 Selection of Representative Modeling Period

Selection of the calibration/validation periods was based on two factors: availability of data (discharge and water-quality) and the need to represent critical hydrological conditions. Mean daily discharge at USGS Gaging Station #01625000 (Middle River at Grottoes) was available from October 1970 to September 2000. The modeling period was selected to include the VADEQ assessment period from July 1992 through June 1997 that led to the inclusion of the Middle and South River segments on the 1998 303(d) Total Maximum Daily Load Priority List and Report. In addition, the fecal concentration data from this period were evaluated for use during calibration and validation of the model.

The mean daily flow and precipitation for each season were calculated for the period October 1970 through September 2000. This resulted in 30 observations of mean flow and precipitation for each season. The mean and variance of these observations were calculated. Next, a representative period for modeling was chosen and compared to the historical data. The initial period was chosen based on the availability of discharge data closest to the fecal coliform assessment period. The representative period was chosen such that the mean and variance of each season in the modeled period was not significantly different from the historical data (Table 4.6, Figure 4.4 and Figure 4.5).

Therefore, the period was selected as representing the hydrologic regime of the study area, accounting for critical conditions associated with all potential sources within the watershed. The resulting period for hydrologic calibration/validation was:

>	Calibration:	1993-1997	(Comparison to 30-minute flow data)
~	Validation:	1986-1990	(Comparison to daily flow data)

Table 4.6	Comparison of modeled period to historical records.
-----------	---

		Mean F	low (cfs)			Precipitati	on (in/day)	
	Fall	Winter	Spring	Summer	Fall	Winter	Spring	Summer
	His	storical Rec	ord (1971-2	000)	His	torical Reco	ord (1971-20)00)
Mean	304	548	392	198	0.096	0.093	0.111	0.118
Variance	47,275	86,384	31,314	18,500	0.002	0.002	0.001	0.002
		Cali	bration & V	Validation Pe	riod (10/85-	9/90, 10/92-9	9/97)	
Mean	310	548	404	241	0.095	0.096	0.117	0.130
Variance	58,657	74,969	36,029	41,205	0.001	0.002	0.002	0.003
				P-Va	lues			
Mean	0.470	0.499	0.426	0.264	0.477	0.418	0.359	0.272
Variance	0.310	0.437	0.360	0.048	0.380	0.435	0.127	0.111

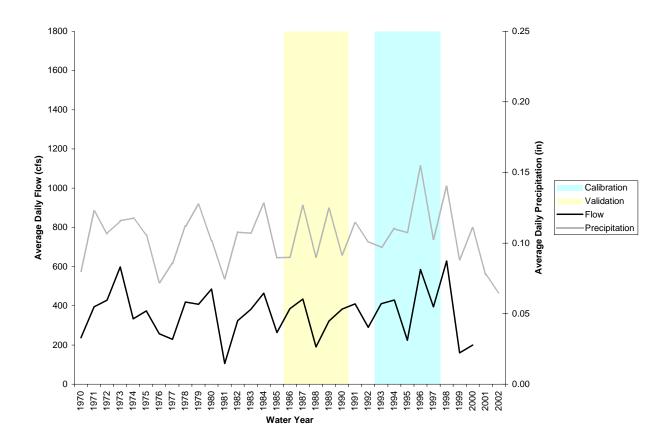


Figure 4.4 Hydrologic calibration and validation periods compared to annual flow and precipitation records.

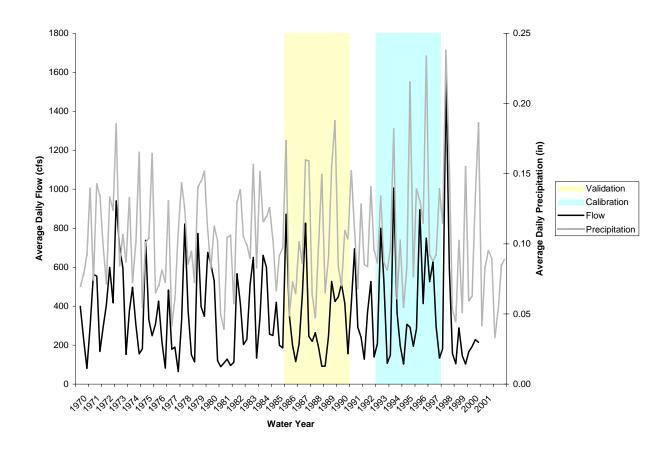


Figure 4.5 Hydrologic calibration and validation periods compared to seasonal flow and precipitation records.

4.6 Sensitivity Analysis

Sensitivity analyses were conducted to assess the sensitivity of the model to changes in hydrologic and water quality parameters as well as to assess the impact of unknown variability in source allocation (*e.g.* seasonal and spatial variability of waste production rates for wildlife, livestock, septic system failures, uncontrolled discharges, background loads, and point source loads). Additional analyses were performed to define the sensitivity of the modeled system to growth or technology changes that impact waste production rates.

Sensitivity analyses were run on both hydrologic and water quality parameters. The parameters adjusted for the hydrologic sensitivity analysis are presented in Table 4.7, with base values for the model runs given. The parameters were adjusted to -50%, -10%, 10%, and 50% of the base value, and the model was run for water years 1993 through

1997. Where an increase of 50% exceeded the maximum value for the parameter, the maximum value was used and the parameters increased over the base value were reported. The hydrologic quantities of greatest interest in a fecal coliform model are those that govern peak flows and low flows. Peak flows, being a function of runoff, are important because they are directly related to the transport of fecal coliforms from the land surface to the stream. Peak flows were most sensitive to changes in the parameters governing infiltration such as INFILT (Infiltration) and UZSN (Upper Zone Storage) which govern surface transport, and by LZETP (Lower Zone Evapotranspiration) which affects soil moisture. To a lesser extent, the model was affected by LZSN (Lower Zone Storage) which also affects soil moisture. Low flows are important in a water quality model because they control the level of dilution during dry periods. Parameters with the greatest influence on low flows (as evidenced by their influence in the Low Flows and Summer Flow Volume statistics) were AGWRC (Groundwater Recession Rate), INFILT, CEPSC (interception), BASETP (Evapotranspiration from Base Flow), and, to a lesser extent DEEPFR (Losses to Deep Aquifers). The response of pertinent hydrologic outputs was recorded, and is reported in Table 4.8.

For the water quality sensitivity analysis, an initial base run was performed using precipitation data from water years 1993 through 1999 and model parameters established for 1995 conditions. The four parameters impacting the model's water quality response (Table 4.9) were increased and decreased by amounts that were consistent with the range of values for the parameter.

Since the water quality standard for fecal coliform bacteria is based on concentrations rather than loadings, it was considered necessary to analyze the effect of source changes on the monthly geometric-mean fecal coliform concentration. A monthly geometric mean was calculated for all months during the simulation period, and the value for each month was averaged. Deviations from the base run are given in Table 4.10 and plotted by month in Figure 4.6 through Figure 4.9.

In addition to analyzing the sensitivity of the model response to changes in model parameters, the response of the model to changes in land-based and direct loads was analyzed. The impacts of land-based and direct load changes on the annual load are presented in Figure 4.10, while impacts on the monthly geometric mean are presented in Figure 4.11 and Figure .

	-	v B	•
Parameter	Description	Units	Base Value
AGWRC	Active Groundwater Coefficient	1/day	0.98
BASETP	Base Flow Evapotranspiration		0.032
CEPSC	Interception Storage Capacity	in	0.1
DEEPFR	Fraction of Deep Groundwater		0.1
INFILT	Soil Infiltration Capacity	in/hr	0.052 - 0.1
INTFW	Interflow Inflow		0.75
KVARY	Groundwater Recession Coefficient	1/day	0.0
LZSN	Lower Zone Nominal Storage	in	6.5
MON-LZETPARM	Monthly Lower Zone Evapotranspiration		0.2 - 0.4
NSUR	Manning's <i>n</i> for Overland Flow		0.05 - 0.2
UZSN	Upper Zone Storage Capacity	in	1.128

Table 4.7Base parameter values used to determine hydrologic model response.

					% Chang	ge in			
	Parameter				Winter	Spring	Summer	Fall	Total
Model	Change	Total	High	Low	Flow	Flow	Flow	Flow	Storm
Parameter	(%)	Flow	Flows	Flows	Volume	Volume	Volume	Volume	Volume
AGWRC	-50	2.38	32.41	-48.26	13.97	-13.38	-0.86	6.70	10.45
AGWRC	-10	1.38	14.74	-29.88	11.05	-11.21	-2.20	5.32	6.87
AGWRC	1.5 ¹	-3.32	-7.60	18.15	-10.65	-6.42	5.61	6.17	2.76
BASETP	-50	1.26	-0.74	6.06	-0.13	2.12	3.03	0.46	1.43
BASETP	-10	0.25	015	1.21	-0.03	0.42	0.61	0.07	0.28
BASETP	10	-0.24	0.15	-1.20	0.03	-0.42	0.61	0.07	-0.28
BASETP	50	-1.15	0.74	-5.58	0.11	-2.09	-2.74	-0.16	-1.34
CEPSC	-50	3.01	0.09	9.22	1.37	3.71	4.21	3.95	3.20
CEPSC	-10	0.61	-0.19	2.23	0.21	0.74	0.99	0.76	0.63
CEPSC	10	-0.28	-0.13	-0.57	-0.17	-0.37	-0.31	-0.33	-0.31
CEPSC	50	-1.41	-0.50	-3.22	-0.83	-1.84	-1.63	-1.71	-1.56
DEEPFR	-50	2.65	1.25	4.26	2.30	3.04	2.57	2.89	3.04
DEEPFR	-10	0.53	0.25	0.85	0.46	0.61	0.51	0.58	0.61
DEEPFR	10	-0.53	-0.25	-0.85	-0.46	-0.61	-0.51	-0.58	-0.61
DEEPFR	50	-2.65	-1.25	-4.25	-2.30	-3.04	-2.57	-2.88	-3.04
INFILT	-50	-0.86	14.71	-17.72	4.23	-3.42	-4.68	-2.88	-0.17
INFILT	-10	-0.88	2.06	-17.72	4.23 0.55	-0.50	-4.00 -0.71	-2.66	-0.17
INFILT	10	0.20	-1.79	2.58	-0.45	0.30	0.66	0.66	0.23
INFILT	50	0.20	-7.05	11.10	-0.45	1.63	2.81	3.14	1.15
INFILI	50	0.90	-7.05	11.10	-1.54	1.05	2.01	5.14	1.15
INTFW	-50	-0.79	-0.53	1.39	-2.15	0.60	0.26	-1.52	-0.93
INTFW	-10	-0.15	-0.05	0.22	-0.31	0.07	0.00	-0.36	-0.18
INTFW	10	0.14	0.08	-0.23	0.28	-0.05	0.00	0.33	0.17
INTFW	50	0.57	0.65	-1.13	1.20	-0.22	-0.05	1.36	0.65
KVARY	+2.5 ¹	4.00	40.40	07.07	40.77	40.00	0.00	0.40	5.00
WWADW		1.06	16.16	-27.87	12.77	-12.82	-2.36	2.19	5.29
KVARY	+5.0 ¹	1.36	20.02	-32.89	13.46	-13.85	-2.46	4.40	6.58
LZSN	-50	3.79	7.77	-1.23	10.10	3.70	-4.31	0.93	4.07
LZSN	-10	0.66	1.12	0.13	1.45	0.85	-0.38	-0.01	0.57
LZSN	10	-0.64	-1.00	-0.25	-1.27	-0.88	0.21	0.04	-0.61
LZSN	50	-2.99	-4.14	-2.28	-5.04	-4.41	0.08	-0.25	-3.00
MON-LZETP	-50	9.03	14.28	5.13	10.17	4.67	6.81	17.05	10.47
MON-LZETP	-10	2.01	2.36	2.45	1.89	1.02	2.01	3.99	2.31
MON-LZETP	10	-2.11	-2.27	-3.02	-1.88	-1.08	-2.35	-4.07	-2.45
MON-LZETP	50	-7.73	-7.75	-11.93	-7.06	-4.43	-8.41	-13.94	-7.68
NCUD	50	0.46	264	1 17	0.64	0.69	0.04	0.25	0.54
NSUR NSUR	-50 -10	0.46 0.07	2.64 0.41	-1.47 -0.21	0.64 0.09	0.68 0.09	0.04 0.02	0.25 0.04	0.54 0.08
NSUR	-10	-0.06	-0.37	-0.21	-0.09	-0.09	-0.02	-0.04	-0.07
NSUR	50	-0.08	-0.37 -1.63	0.20	-0.08	-0.09	-0.01	-0.04 -0.14	-0.32
TIDUK	50	-0.21	-1.05	0.04	-0.00	-0.37	-0.00	-0.14	-0.52
UZSN	-50	5.91	14.86	-1.47	5.14	6.61	5.65	6.94	6.87
UZSN	-10	0.92	2.20	-0.10	0.89	0.91	0.90	1.02	1.06
UZSN	10	-0.83	-1.94	0.03	-0.84	-0.79	-0.82	-0.89	-0.96
UZSN	50	-3.54	-7.99	-0.27	-3.78	-3.15	-3.62	-3.48	-4.09
1									

Table 4.8Sensitivity analysis results for hydrologic model parameters.

¹Maximum value used corresponds to the maximum allowable value for the parameter.

respo			
Parameter	Description	Units	Base Value
MON-SQOLIM	Maximum FC Accumulation on Land	FC/ac	0.00E + 00 - 1.10E
WSQOP	Wash-off Rate for FC on Land Surface	in/hr	1.00E-02 - 3.2E+0
MON-IFLW-CONC	FC Interflow Concentration	FC/ft ³	0 - 1.8E + 06
FSTDEC	In-stream First Order Decay Rate	1/day	0.01 - 10

Table 4.9Base parameter values used to determine water quality model
response.

	1993-1998												
Model Parameter	Parameter Change	Pe	rcent (Change	in Ave	erage N	Ionthly 1993 -		eometr	ic Mea	n for tl	ne Year	rs
	(%)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
FSTDEC	-50	20.8	20.9	20.8	20.7	20.3	20.5	19.4	18.8	18.0	15.8	18.0	19.9
FSTDEC	-10	3.5	3.6	3.5	3.5	3.5	3.5	3.3	3.1	3.0	2.6	3.0	3.4
FSTDEC	10	-3.3	-3.3	-3.3	-3.3	-3.2	-3.2	-3.0	-2.9	-2.8	-2.4	-2.8	-3.1
FSTDEC	50	-14.5	-14.7	-14.5	-14.3	-14.1	-14.2	-13.3	-12.7	-12.2	-10.5	-12.0	-13.6
MON-IFLW													
CONC	-100	-76.2	-78.1	-64.7	-42.7	-45.7	-43.1	-19.9	-24.7	-22.6	-7.5	-22.8	-51.9
MON-IFLW													
CONC	-50	-31.4	-34.6	-27.1	-18.6	-19.9	-17.9	-8.0	-9.9	-9.8	-3.3	-9.0	-22.5
MON-IFLW CONC	50	22.4	26.8	20.6	14.3	17.9	18.4	8.5	8.5	7.5	2.8	6.4	16.8
MON-IFLW	50	22.7	20.0	20.0	17.5	17.7	10.4	0.5	0.5	1.5	2.0	0.4	10.0
CONC	100	64.5	70.1	51.4	35.0	39.3	34.6	13.6	16.8	18.0	5.4	15.6	45.8
SQOLIM	-50	-5.7	-2.5	-2.7	-2.1	-3.2	-6.1	-2.0	-2.4	-2.8	-1.5	-5.3	-5.6
SQOLIM	-25	-2.6	-1.0	-1.0	-0.9	-1.4	-2.6	-0.8	-0.9	-1.2	-0.5	-2.3	-2.7
SQOLIM	50	5.5	2.0	1.3	1.0	1.6	3.5	1.0	1.2	1.9	0.8	4.0	4.8
SQOLIM	100	10.4	3.7	2.2	1.6	2.7	5.8	1.6	2.0	3.3	1.3	6.6	8.2
WSQOP	-50	7.0	5.7	6.3	6.0	7.5	7.9	3.9	2.8	3.8	3.0	8.4	8.1
WSQOP	-10	1.0	0.8	0.9	0.8	1.0	1.1	0.5	0.4	0.6	0.4	1.2	1.2
WSQOP	10	-0.9	-0.8	-0.8	-0.7	-0.9	-1.0	-0.5	-0.4	-0.5	-0.4	-1.0	-1.0
WSQOP	50	-3.7	-3.1	-3.1	-2.9	-3.7	-4.0	-2.0	-1.6	-2.0	-1.5	-4.1	-4.1

Table 4.10Percent change in average monthly FC geometric mean for the years
1993-1998.

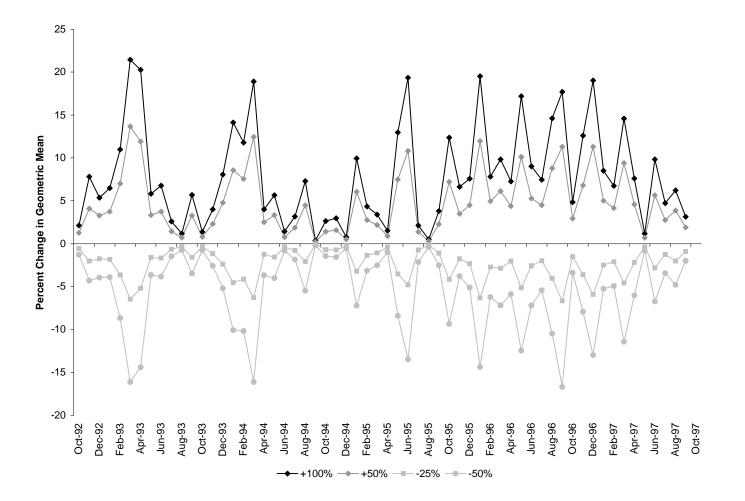
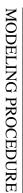



Figure 4.6 Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in maximum FC accumulation on land (MON-SQOLIM).

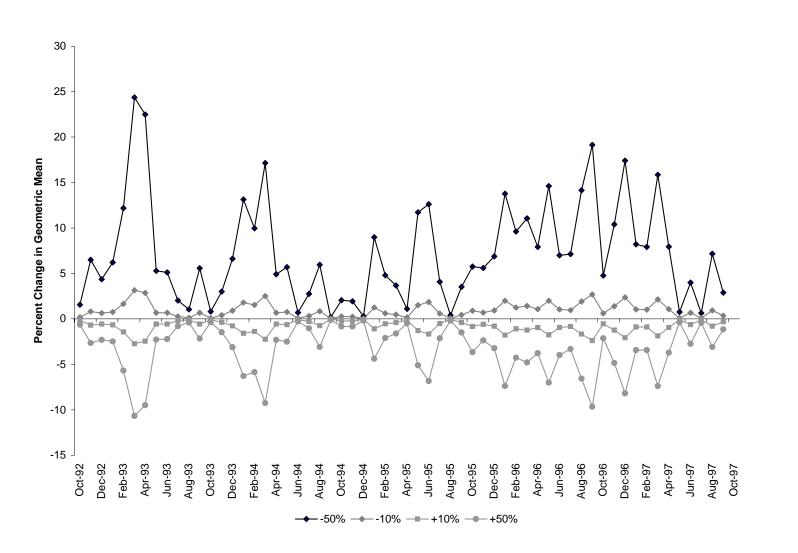


Figure 4.7 Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in the wash-off rate for FC fecal coliform on land surfaces (WSQOP).

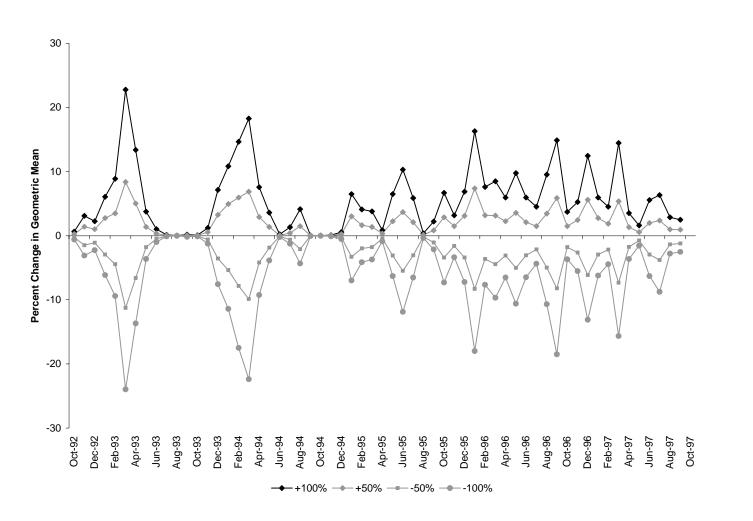


Figure 4.8 Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in the concentration of fecal coliform in interflow (IFLW).

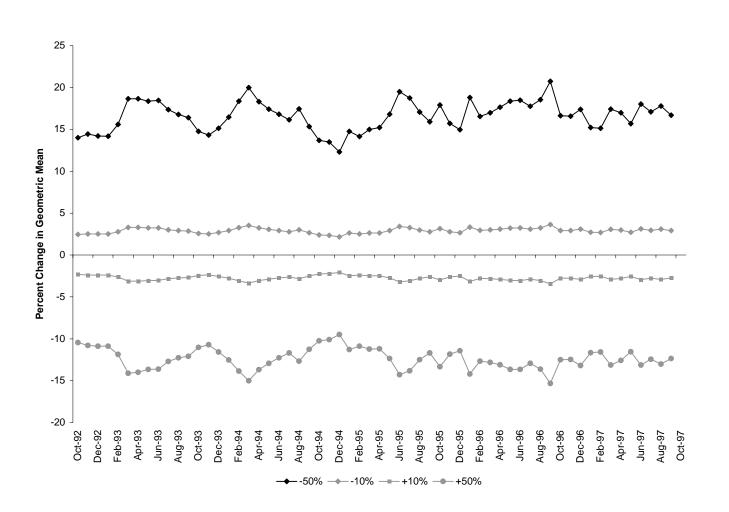
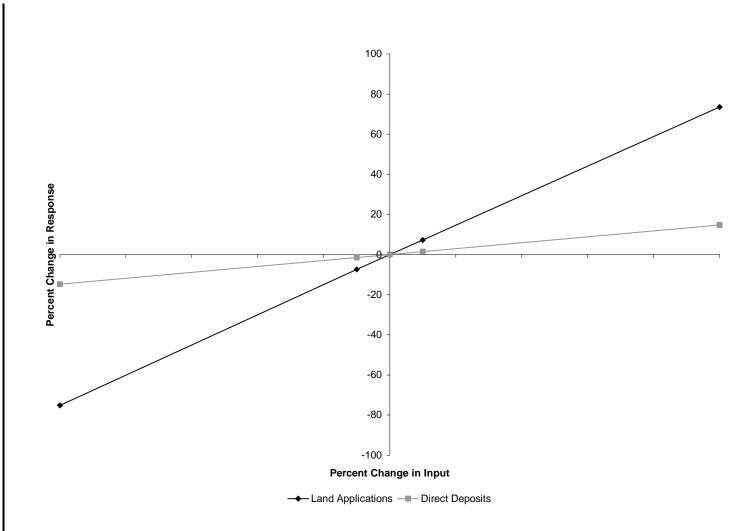



Figure 4.9 Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in the in-stream first-order decay rate (FSTDEC).

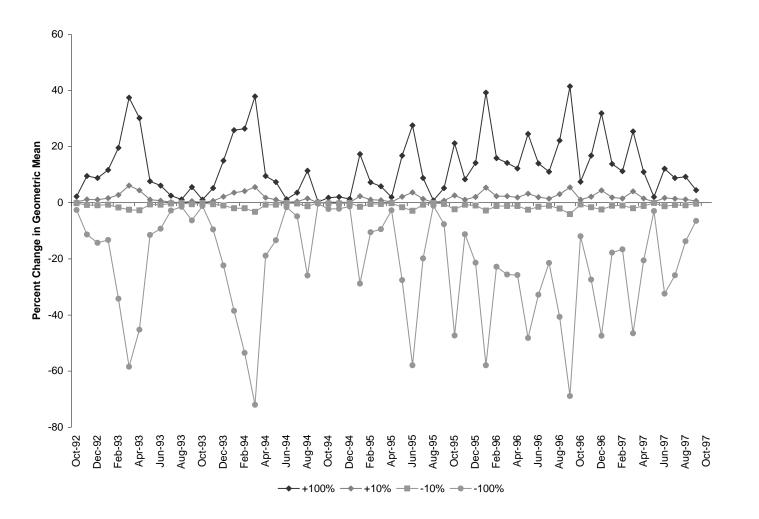


Figure 4.11 Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in land-based loadings.

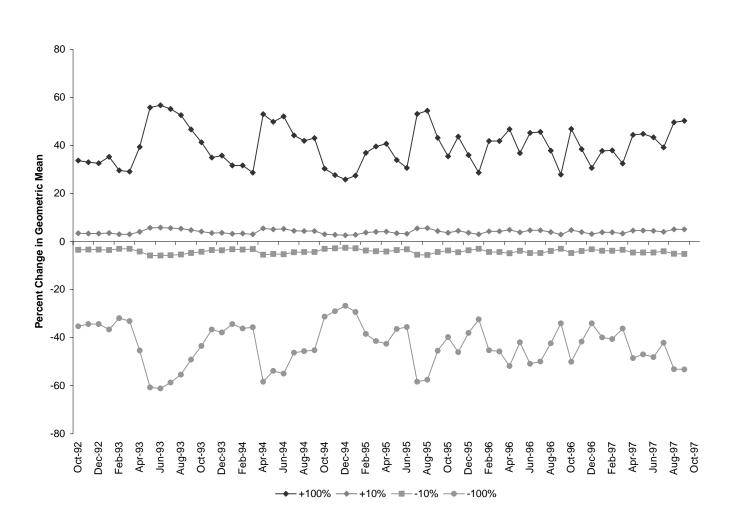


Figure 4.12 Results of sensitivity analysis on monthly geometric-mean concentrations in the Middle River watershed, as affected by changes in loadings from direct nonpoint sources.

4.7 Model Calibration and Validation Processes

Calibration and validation are performed in order to ensure that the model accurately represents the hydrologic and water quality processes in the watershed. The model's hydrologic parameters were set based on available soils, landuse, and topographic data. Qualities of fecal coliform sources were modeled as described in chapters 3 and 4. Through calibration, these parameters were adjusted within appropriate ranges until the model performance was deemed acceptable.

Calibration is the process of comparing modeled data to observed data and making appropriate adjustments to model parameters to minimize the error between observed and simulated events. Using observed data that is reported at a shorter time-step improves this process and, subsequently, the performance of a time-dependent model. Validation is the process of comparing modeled data to observed data during a period other than that used for calibration. During validation, no adjustments are made to model parameters. The goal of validation is to assess the capability of the model in hydrologic conditions other than those used during calibration.

4.7.1 Hydrologic Calibration and Validation

Parameters that were adjusted during the hydrologic calibration represented the amount of evapotranspiration from the root zone (MON-LZE), the recession rates for groundwater (AGWRC), the amount of soil moisture storage in the upper zone (MON-UZS) and lower zone (MON-LZE), the infiltration capacity (INFILT), baseflow PET (BASETP), forest coverage (FOREST), and Manning's n for overland flow plane (MON-MAN). Table 4.11 contains the typical range for the above parameters along with the initial estimate and final calibrated value. Specific values for each calibrated parameter are given in the excerpt from the calibrated UCI in Appendix F.

The results of calibration and validation for Middle and South River are presented in Table 4.12 through Table 4.15 and Figure 4.13 through Figure 4.24. The model was calibrated/validated for hydrologic accuracy using 30-minute flow data from USGS Station #01625000 (Middle River at Grottoes) and USGS Station #01626000 (South

River near Waynesboro). The distribution of flow volume between surface runoff, interflow, and groundwater was 20%, 14%, and 66%, respectively, for Middle River; and 17%, 26%, and 57%, respectively, for South River. Acceptable values of error (%) vary with the parameter being assessed. Parameters that represent the long-term response of the model are held to a higher standard than parameters that are more temporally specific. For instance, the error associated with "Total In-stream Flow" is a measure of the long-term accuracy of the model and is expected to be less than 10%; however, the errors associated with seasonal "Storm Volumes" measure the accuracy of the model for specific storms within seasons and are expected to be less than 50%. The errors reported for calibration and validation are all within acceptable limits and the hydrologic model is considered to be an accurate representation of the system.

Parameter	Units	Typical Range of	Initial Parameter	Calibrated
		Parameter Value	Estimate	Parameter Value
FOREST		0.0 - 0.95	0.0	0.0-1.0
LZSN	in	2.0 - 15.0	1.5	6.5
INFILT	in/hr	0.001 - 0.50	0.01 - 0.354	0.052 - 0.1
LSUR	ft	100 - 700	100-3500	100 - 3500
SLSUR		0.001 - 0.30	0.001 -0.2849	0.001 - 0.2849
KVARY	1/in	0.0 - 5.0	0.0	0.0
AGWRC	1/day	0.85 - 0.999	0.97 - 0.98	0.98
PETMAX	deg F	32.0 - 48.0	40.0	40.0
PETMIN	deg F	30.0 - 40.0	35.0	35.0
INFEXP		1.0 - 3.0	2.0	2.0
INFILD		1.0 - 3.0	2.0	2.0
DEEPFR		0.0 - 0.50	0.1	0.1
BASETP		0.0 - 0.20	0.02	0.033
AGWETP		0.0 - 0.20	0.0	0.0
INTFW		1.0 - 10.0	0.75	0.75
IRC	1/day	0.30 - 0.85	0.5	0.5
MON-INT	in	0.01 - 0.40	0.1	0.1
MON-UZS	in	0.05 - 2.0	1.92 - 2.068	1.00-1.18
MON-LZE		0.1 - 0.9	0.2 - 0.65	0.2-0.4
MON-MAN		0.10 - 0.50	1.92 - 2.068	0.1
RETSC	in	0.0 - 1.0	0.1	0.1
KS		0.0 - 0.9	0.5	0.5

Table 4.11Model parameters utilized for hydrologic calibration.

Criterion	Observed	Modeled	Error
Total In-stream Flow:	103.8201	97.9823	-5.62%
Upper 10% Flow Values:	45.1386	42.2267	-6.45%
Lower 50% Flow Values:	17.1719	17.4462	1.60%
Winter Flow Volume	45.7505	36.5536	-20.10%
Spring Flow Volume	24.0469	23.5158	-2.21%
Summer Flow Volume	17.7456	22.1090	24.59%
Fall Flow Volume	16.2771	15.8039	-2.91%
Total Storm Volume	82.1823	80.5467	-1.99%
Winter Storm Volume	40.4048	32.2458	-20.19%
Spring Storm Volume	18.6506	19.1661	2.76%
Summer Storm Volume	12.2981	17.7028	43.95%
Fall Storm Volume	10.8288	11.4320	5.57%

Table 4.12	Hydrology calibration criteria and model performance for Middle
	River for the period 9/30/92 through 9/30/97.

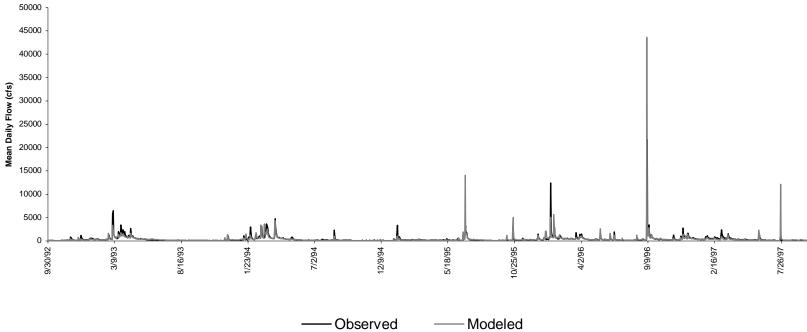
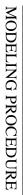



Figure 4.13 Calibration results for Middle River for the period 9/30/92 through 9/30/97.

TMDL Development

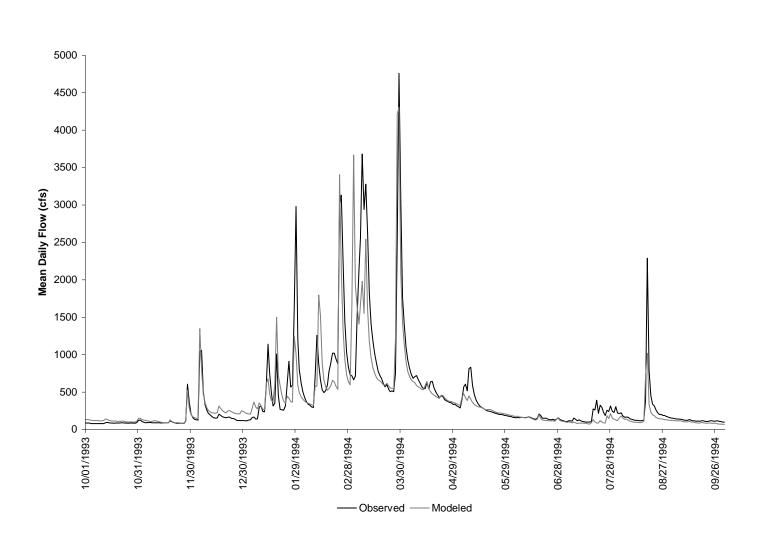


Figure 4.14 Calibration results for Middle River for the period 10/1/93 through 9/26/94.

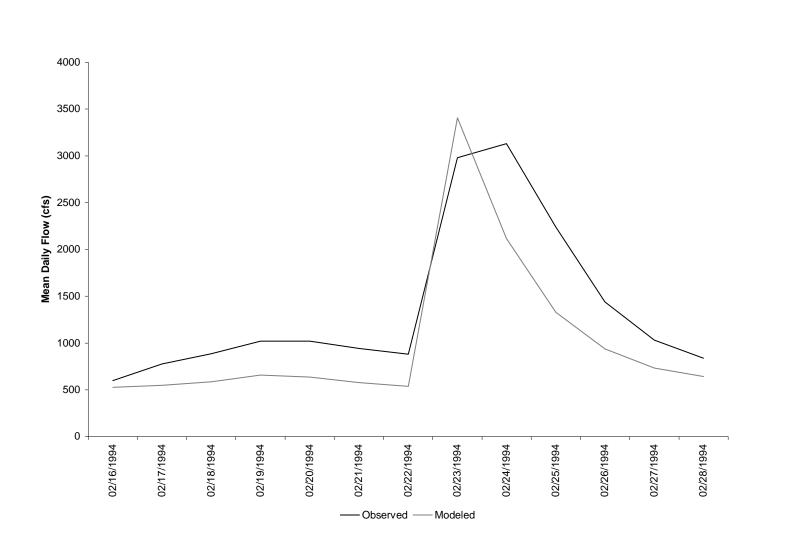


Figure 4.15 Calibration results for a single storm event for Middle River.

Criterion Observed Modeled Err						
Total In-stream Flow:	87.3110	72.6406	-16.80%			
Upper 10% Flow Values:	35.7036	23.2434	-34.90%			
Lower 50% Flow Values:	16.6590	17.9655	7.84%			
Winter Flow Volume	23.1849	18.1280	-21.81%			
Spring Flow Volume	27.2861	20.0421	-26.55%			
Summer Flow Volume	13.2657	16.4767	24.21%			
Fall Flow Volume	23.5742	17.9938	-23.67%			
Total Storm Volume	68.7272	57.1322	-16.87%			
Winter Storm Volume	18.5912	14.2874	-23.15%			
Spring Storm Volume	22.6516	16.1774	-28.58%			
Summer Storm Volume	8.5891	12.5901	46.58%			
Fall Storm Volume	18.8953	14.0773	-25.50%			

Table 4.13	Hydrology validation criteria and model performance for Middle
	River period 9/30/85 through 9/8/90.

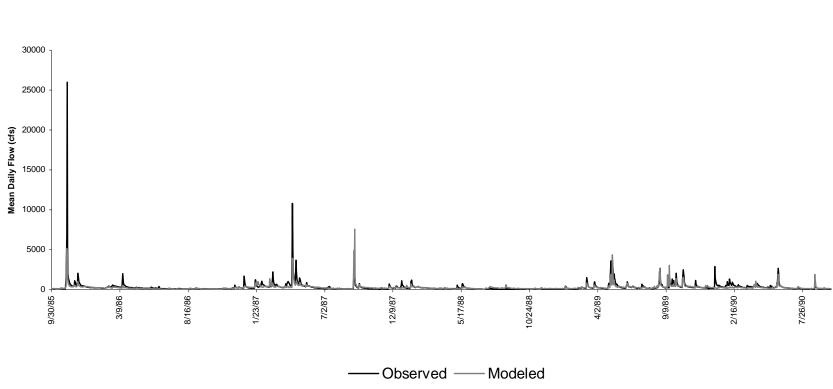
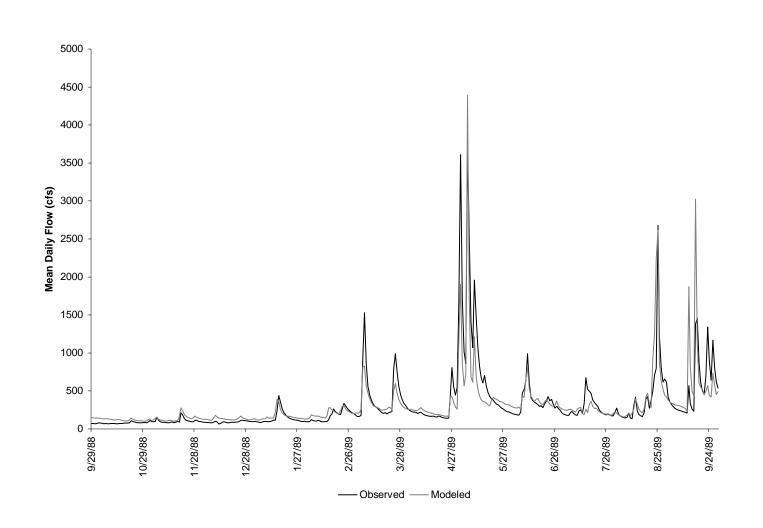



Figure 4.16 Validation results for Middle River for the period 9/30/85 through 9/30/90.

TMDL Development

MODELING PROCEDURE

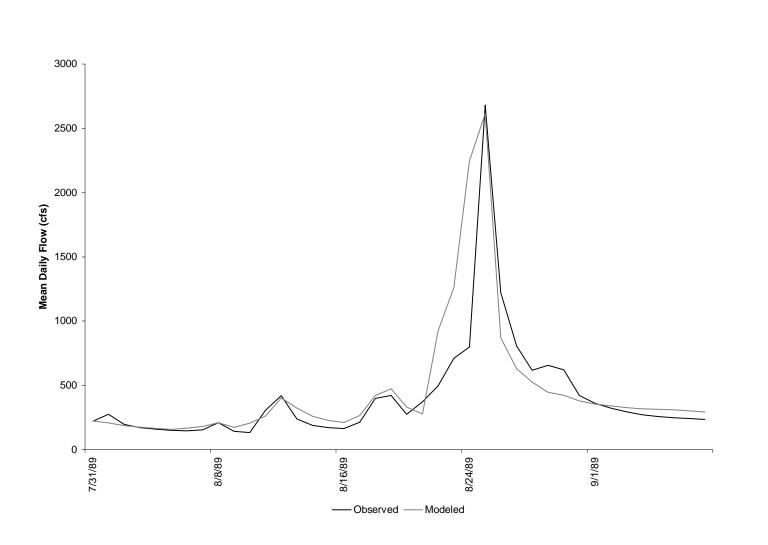
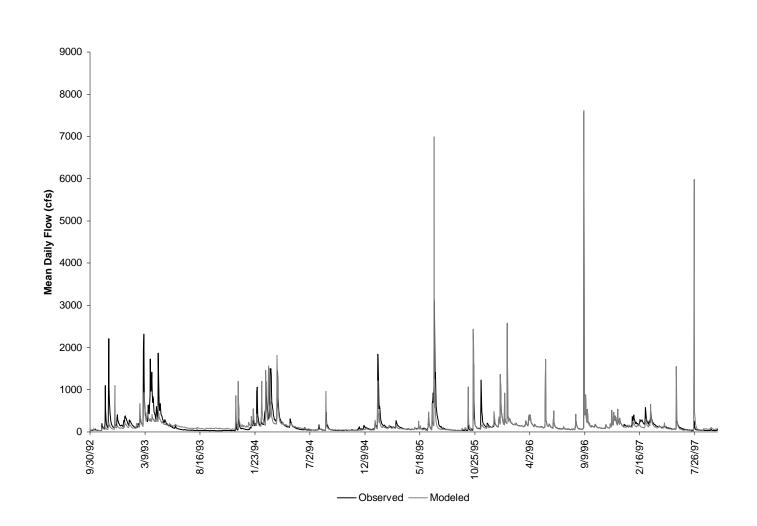
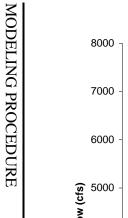
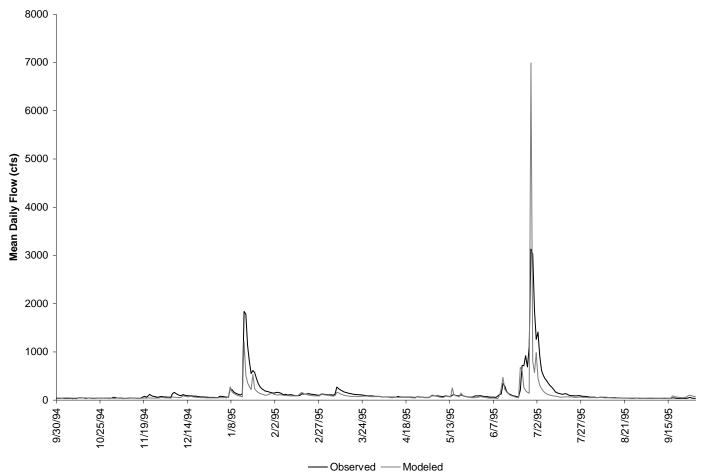
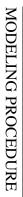



Figure 4.18 Validation results for a single storm for Middle River.

Criterion	Observed	Modeled	Error
Total In-stream Flow:	95.2180	85.6326	-10.07%
Upper 10% Flow Values:	41.5463	34.6300	-16.65%
Lower 50% Flow Values:	15.5484	17.7163	13.94%
Winter Flow Volume	39.7836	30.8535	-22.45%
Spring Flow Volume	23.8922	21.4487	-10.23%
Summer Flow Volume	13.5288	16.4569	21.64%
Fall Flow Volume	18.0135	16.8735	-6.33%
Total Storm Volume	77.5420	65.3787	-15.69%
Winter Storm Volume	35.4173	25.8380	-27.05%
Spring Storm Volume	19.4872	16.3912	-15.89%
Summer Storm Volume	9.0683	11.3814	25.51%
Fall Storm Volume	13.5692	11.7681	-13.27%


Table 4.14	Hydrology calibration criteria and model performance for South
	River for the period 9/30/93 through 9/30/97.





Middle River, VA

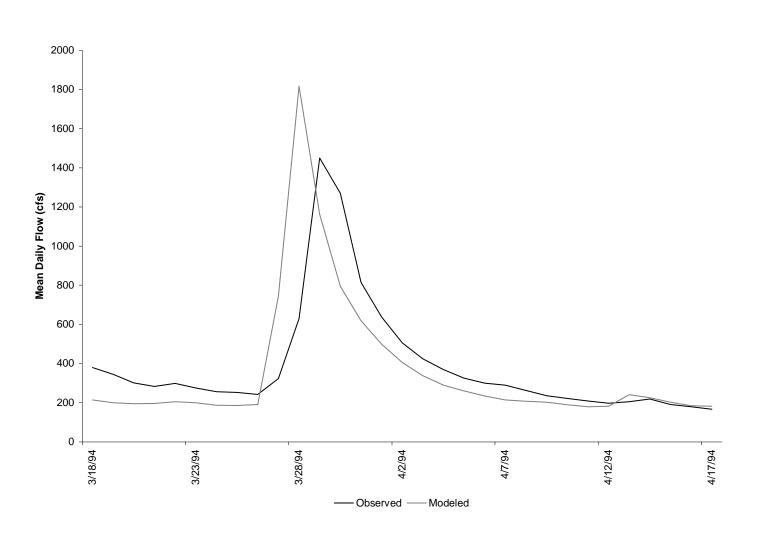


Figure 4.21 Calibration results for a single storm event for South River.

Criterion	Observed	Modeled	Error
Total In-stream Flow:	41.5912	36.2925	-12.74%
Upper 10% Flow Values:	18.9966	13.3819	-29.56%
Lower 50% Flow Values:	6.8461	8.3186	21.51%
Winter Flow Volume	9.8902	9.7576	-1.34%
Spring Flow Volume	14.0497	10.2828	-26.81%
Summer Flow Volume	5.5692	7.1501	28.39%
Fall Flow Volume	12.0821	9.1019	-24.67%
Total Storm Volume	34.2077	30.7663	-10.06%
Winter Storm Volume	8.0653	8.3795	3.90%
Spring Storm Volume	12.2086	8.8925	-27.16%
Summer Storm Volume	3.7040	5.7976	56.52%
Fall Storm Volume	10.2298	7.6967	-24.76%

Table 4.15	Hydrology validation criteria and model performance for South River
	for the period 9/30/85 through 9/8/90.

MODELING PROCEDURE

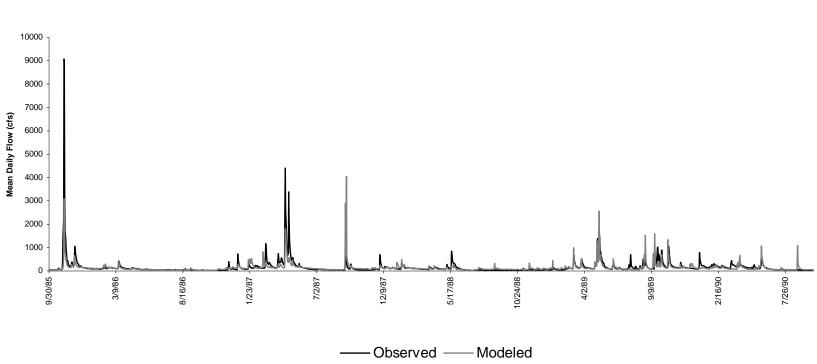
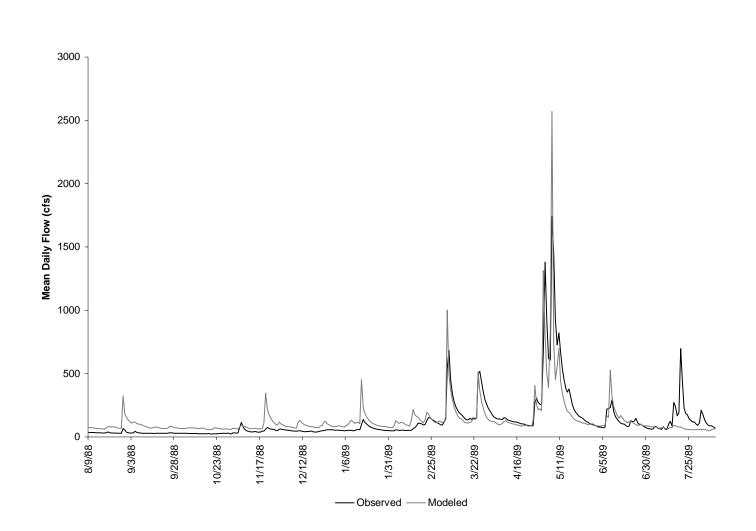



Figure 4.22 Validation results for South River for the period 9/30/85 through 9/8/90.

TMDL Development

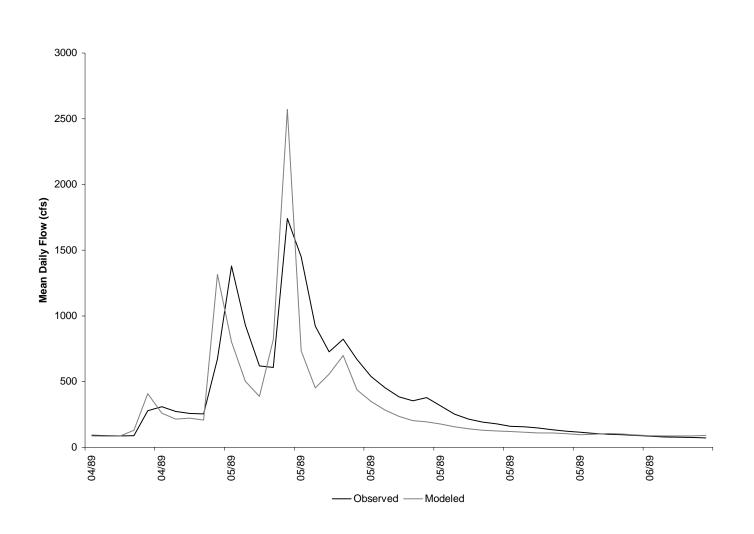


Figure 4.24 Validation results for a single storm for South River.

4.7.2 Water Quality Calibration and Validation

Water quality calibration is complicated by a number of factors, some of which are described here. First, water quality concentrations (*e.g.*, fecal coliform concentrations) are highly dependent on flow conditions. Any variability associated with the modeling of stream flow compounds the variability in modeling water quality parameters such as fecal coliform concentration. Second, the concentration of fecal coliform is particularly variable. Variability in location and timing of fecal deposition, variability in the density of fecal coliform bacteria in feces (among species and for an individual animal), environmental impacts on regrowth and die-off, and variability in delivery to the stream all lead to difficulty in measuring and modeling fecal coliform concentrations. Additionally, the limited amount of measured data for use in calibration and the practice of censoring both high (maximum values were at times censored at 8,000 cfu/100 ml and, at other times, 16,000 cfu/100 ml) and low (under 100 cfu/100 ml) concentrations impedes the calibration process.

The water quality calibration was conducted using monitored data from 10/1/92 through 9/30/97. Four parameters were utilized for model adjustment: in-stream first-order decay rate (FSTDEC), maximum accumulation on land (SQOLIM), rate of surface runoff that will remove 90% of stored fecal coliform per hour (WSQOP), and concentration of fecal coliform in interflow (IOQC). All of these parameters were initially set at expected levels for the watershed conditions and adjusted within reasonable limits until an acceptable match between measured and modeled fecal coliform concentrations was established (Table 4.16). Specific values for each calibrated parameter are given in the excerpt from the calibrated UCI in Appendix F. Figure 4.25 through Figure 4.30 show the results of water quality calibration. Short-period fluctuations in the modeled data denote the effective modeling of the variability within daily concentrations that was achieved through distributing direct depositions from wildlife, livestock, and uncontrolled discharges across each day (Section 4.3). Modeled coliform levels matched observed levels during a variety of flow conditions, indicating that the model was well calibrated.

Calibrated Parameter Parameter Units **Typical Range of Initial Parameter Parameter Value** Estimate Value MON-ACCUM FC/ac*day 0.0E+00 - 1.0E+200.0E+00 - 1.0E+120.0E+00 - 1.0E+12MON-SQOLIM FC/ac 1.0E-02 - 1.0E+300.0E + 00 - 7.0E + 120.0E+00 - 1.5E+13in/hr 0.01-2.4 WSQOP 0.05 - 3.001.00 IOQC FC/ft³ $0.0E{+}00 - 1.0E{+}06$ 1.0E+03 0.0E+00-8.5E+05 AOQC FC/ft³ 0 - 100 0 DQAL FC/100ml 0 - 1,000200 200 FSTDEC 0.01 - 10.001.00 0.5 - 5.01/day 1.0 - 2.01.07 THFST 1.07 ---

Table 4.16Model parameters utilized for water quality calibration.

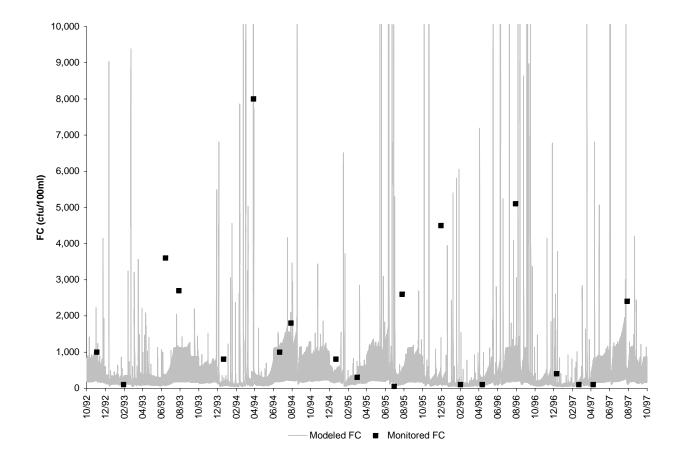


Figure 4.25 Quality Calibration for subwatershed 1 in the Lower Middle River impairment.

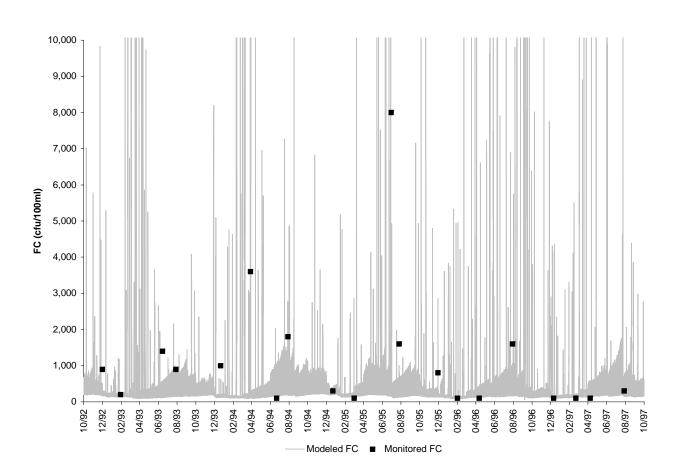


Figure 4.26 Quality Calibration for subwatershed 14 in the Moffett Creek impairment.

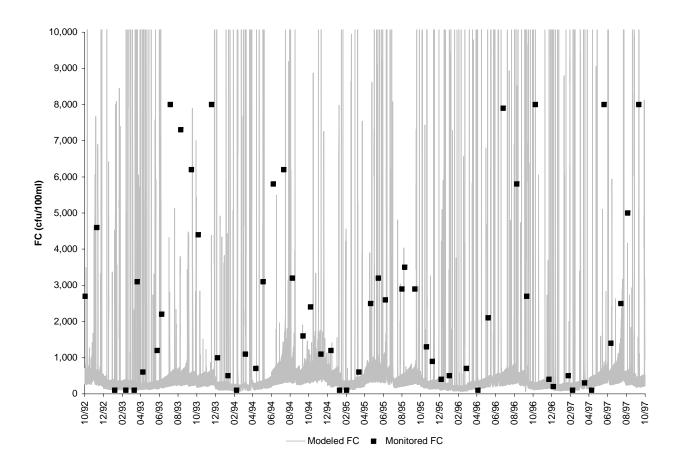


Figure 4.27 Quality Calibration for subwatershed 23 in the Lewis Creek impairment.

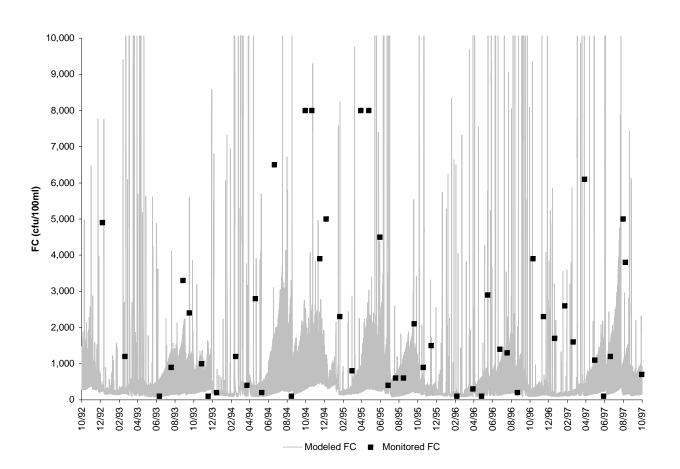


Figure 4.28 Quality Calibration for subwatershed 33 in the Polecat Draft impairment.

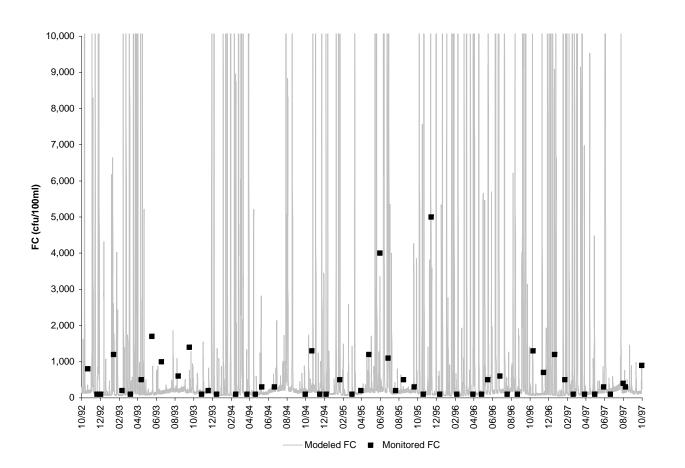


Figure 4.29 Quality Calibration for subwatershed 36 in the Lower Middle River impairment.

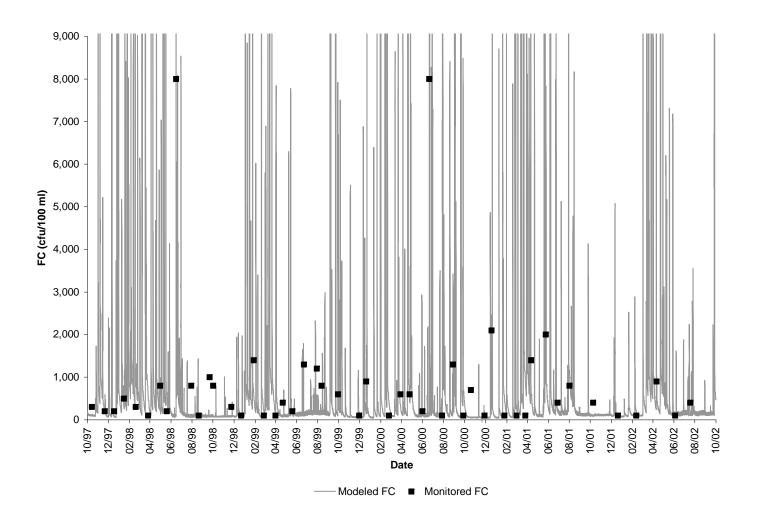


Figure 4.30 Quality Calibration for subwatershed 43 in the Upper South River impairment.

Careful inspection of graphical comparisons between continuous simulation results and limited observed points was the primary tool used to guide the calibration process. To provide a quantitative measure of the agreement between modeled and measured data while taking the inherent variability of fecal coliform concentrations into account, each observed value was compared with modeled concentrations in a 2-day window surrounding the observed data point. First, the minimum and maximum modeled values in each modeled window was determined. Figure 4.31 through Figure 4.36 show the relationship between these extreme values and observed data. In addition, standard error in each observation window was calculated as follows:

Standard Error =
$$\frac{\sqrt{\sum_{i=1}^{n} (observed - modeled_i)^2}}{(n-1)}}{\sqrt{n}}$$

where

observed = an observed value of fecal coliform $modeled_i =$ a modeled value in the 2 - day window surrounding the observation n = the number of modeled observations in the 2 - day window

This 2-day window is considered to be a reasonable time frame to take into account the temporal variability in direct loadings from wildlife and livestock, the spatial and temporal variability inherent in the use of point measurements of precipitation, and in the use of daily precipitation data. This is a non-traditional use of standard error, applied here to offer a quantitative measure of model accuracy. In this context, standard error measures the variability of the sample mean of the modeled values about an instantaneous observed value. The use of limited instantaneous observed values to evaluate continuous data introduces error and, therefore, increases standard error. The mean of all standard errors for each station analyzed was calculated. Additionally, the maximum concentration values observed in the simulated data were compared with

maximum values obtained from uncensored data and found to be at reasonable levels (Table 4.17).

WQ Monitoring Station	Mean Standard Error (cfu/100 ml)	Maximum Simulated Value (cfu/100 ml)	Modeled% Exceedance of Instantaneous Standard	Observed % Exceedance of Instantaneous Standards
1BMDL061.07	163	56,402	37	61
1BJEN002.46	20	20,784	7	5
1BMFT006.20	171	56,402	34	41
1BLEW002.91	239	245,200	41	78
1BMDL036.08	33	11,097	12	14
1BPCD001.03, 1BPCD000.20*	144	59,077	46	76
1BMDL001.83	93	173,080	22	34

Table 4.17Results of analyses on calibration runs.

* Values from both stations used for same subwatershed.

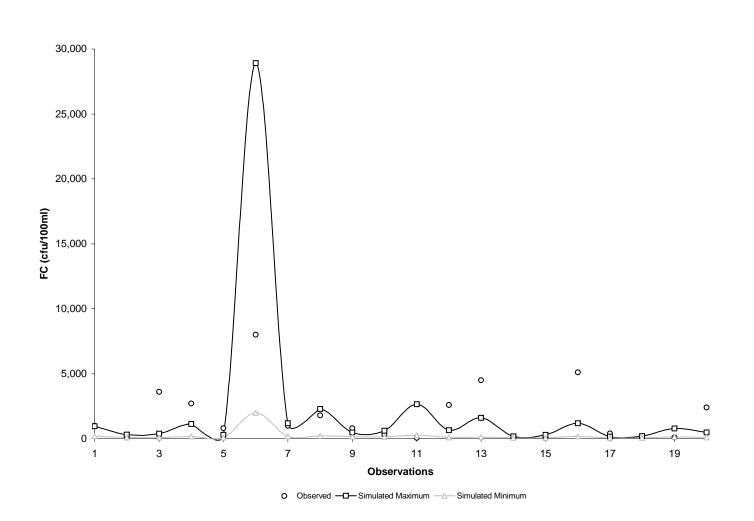


Figure 4.31 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Calibration period for subwatershed 1 in the Upper Middle River impairment.

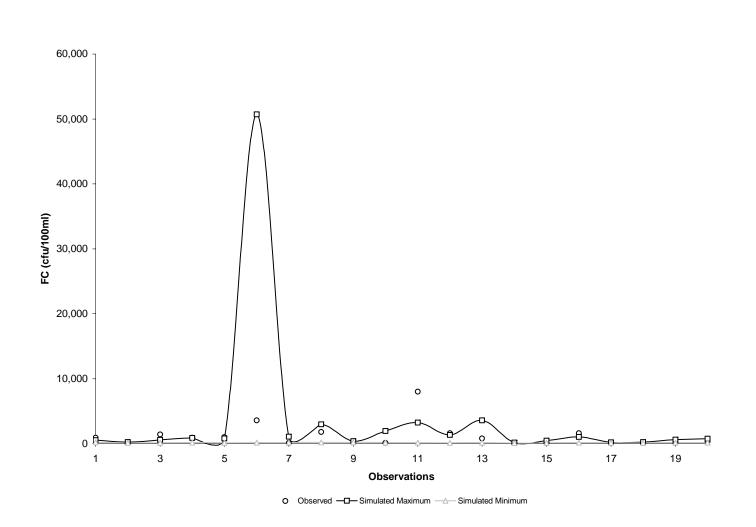


Figure 4.32 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Calibration period for subwatershed 14 in Moffett Creek impairment.

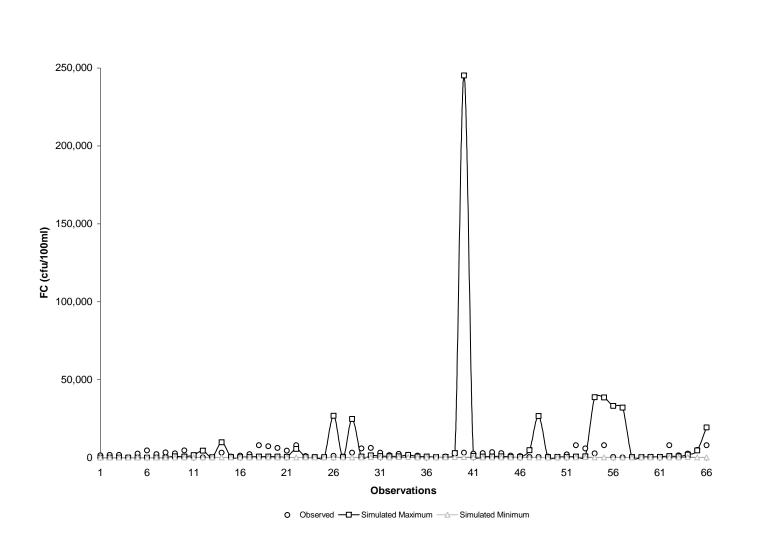


Figure 4.33 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Calibration period for subwatershed 23 in Lewis Creek impairment.

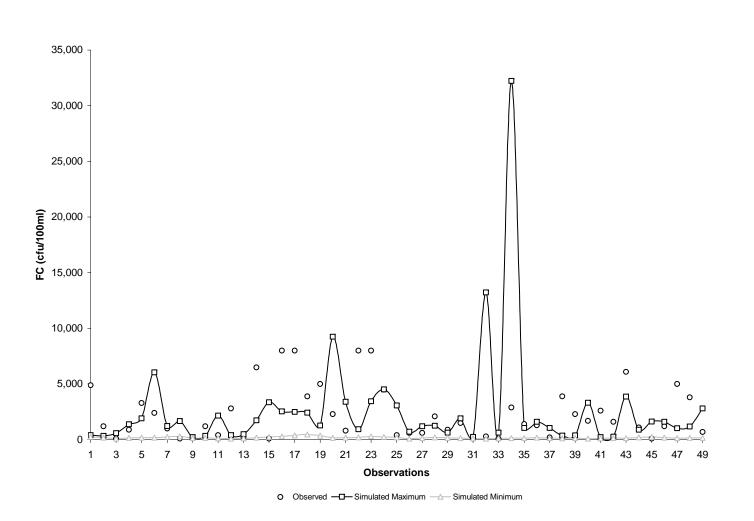


Figure 4.34 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Calibration period for subwatershed 33 in the Polecat Draft impairment.

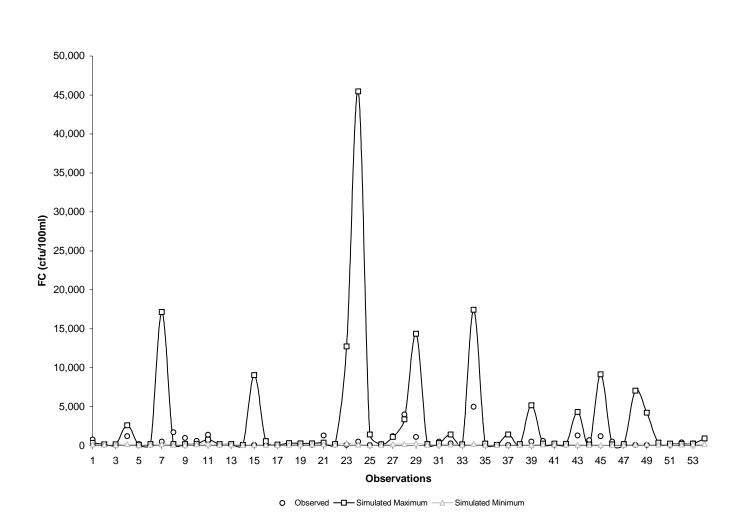


Figure 4.35 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Calibration period for subwatershed 36 in the Lower Middle River impairment.

ngle

low ver i

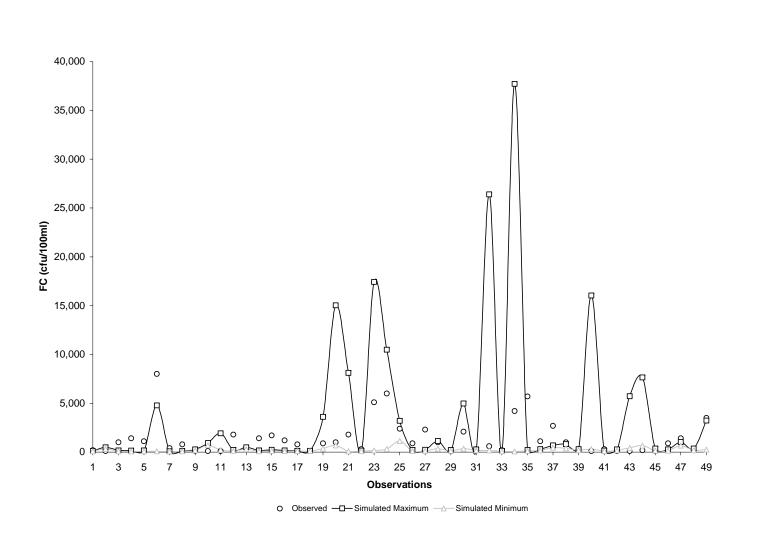


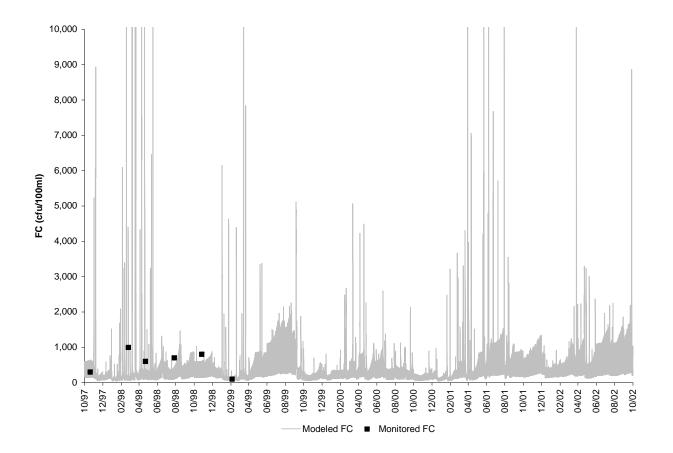
Figure 4.36 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Calibration period for subwatershed 43 in the Upper South River impairment.

The water quality validation was conducted using data for the time period from 10/1/97 to 9/30/02. The relationship between observed values and modeled values is shown in Figures 4.37 through 4.52. The results of standard error and maximum value analyses are reported in Table 4.18. Standard errors calculated from validation runs were comparable to standard errors calculated from calibration runs. Maximum simulated values were comparable to observed values in the area (Section 2).

WQ Monitoring Station	Mean Standard Error (cfu/100 ml)	Maximum Simulated Value (cfu/100 ml)	Modeled % Exceedance of Instantaneous Standard	Observed % Exceedance of Instantaneous Standard
1BMDL061.07	41	27,846	37	61
1BMDL060.48	105	23,686	32	57
1BMDL051.36	27	24,019	08	8
1BMFT006.20	133	61,816	34	41
1BLEW002.91	125	500,000	40	78
1BPCD001.03, 1BPCD000.20	103	61,680	47	76
1BMDL001.83	148	161,160	22	34

Table 4.18Results of analyses on validation runs.

* Values from both stations used for same subwatershed.



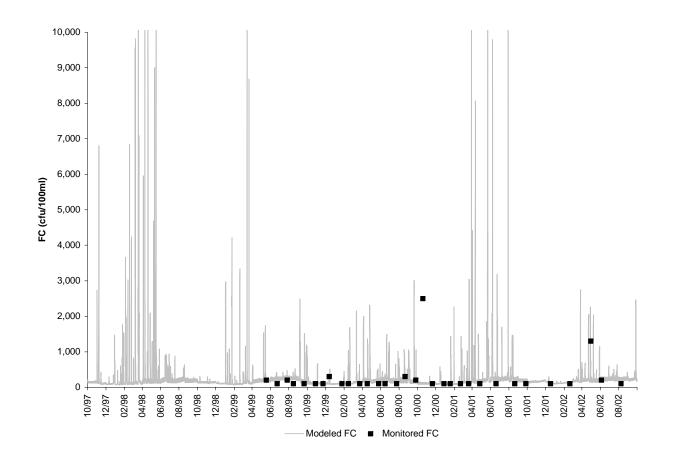
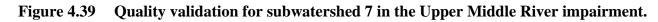



Figure 4.37 Quality validation for subwatershed 1 in the Upper Middle River impairment.

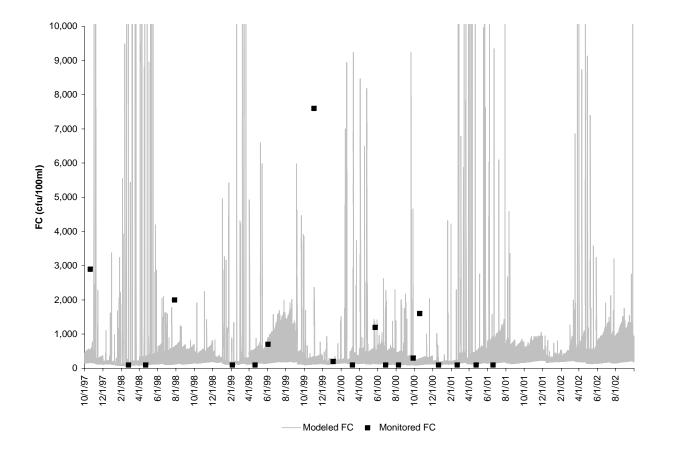
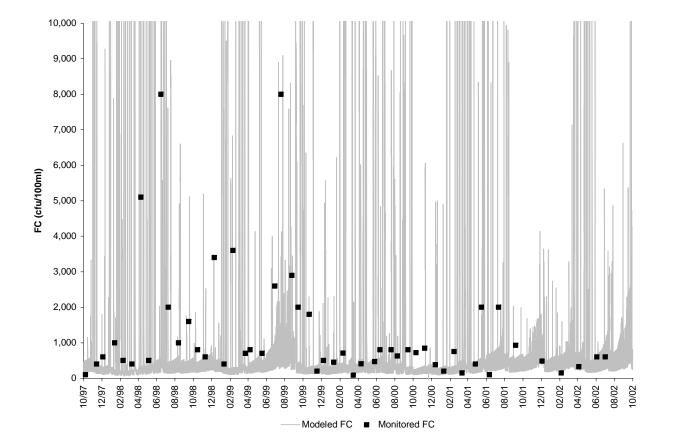



Figure 4.40 Quality validation for subwatershed 14 in the Moffett Creek impairment.

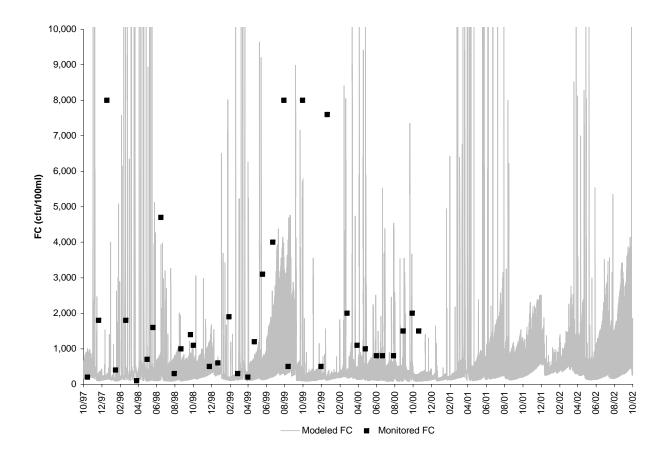


Figure 4.42 Quality validation for subwatershed 33 in the Polecat Draft impairment.

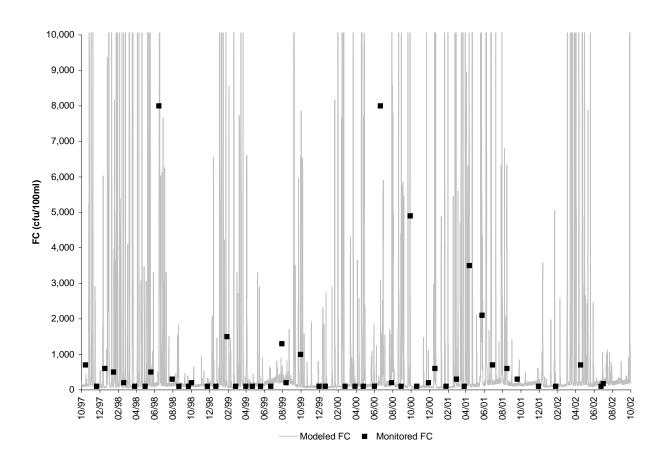


Figure 4.43 Quality validation for subwatershed 36 in the Lower Middle River impairment.

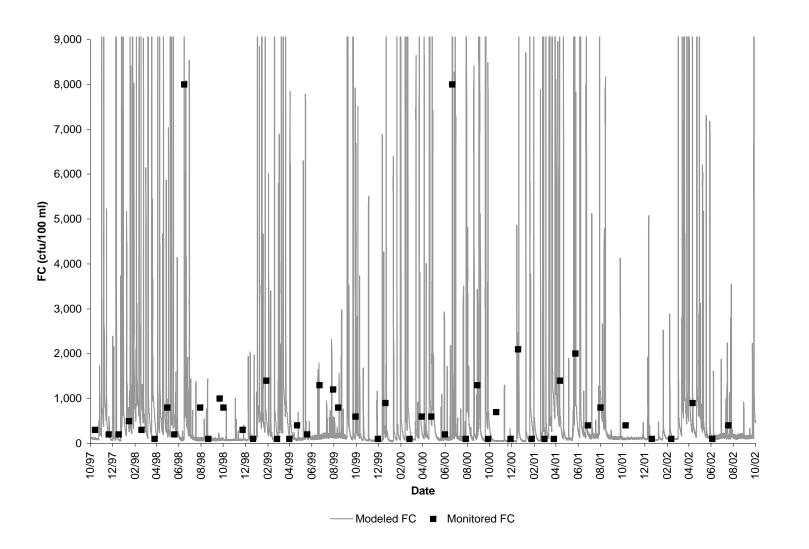


Figure 4.44 Quality validation for subwatershed 43 in the Upper South River impairment.

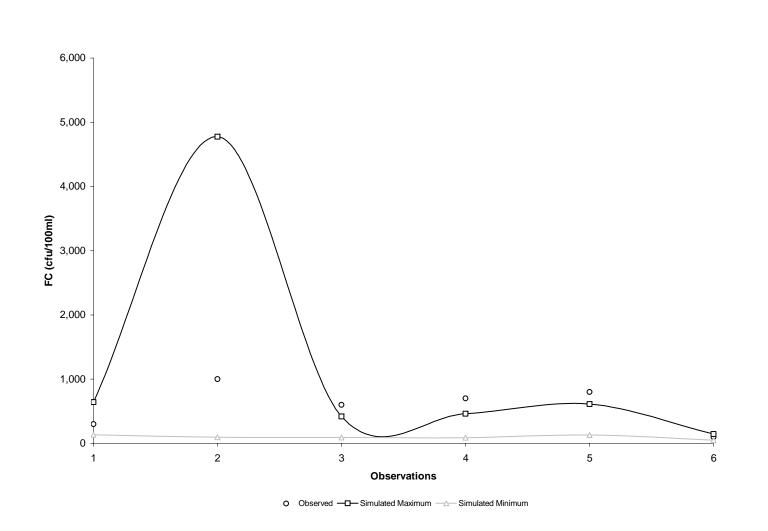


Figure 4.45 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Validation period for subwatershed 1 in the Upper Middle River impairment.

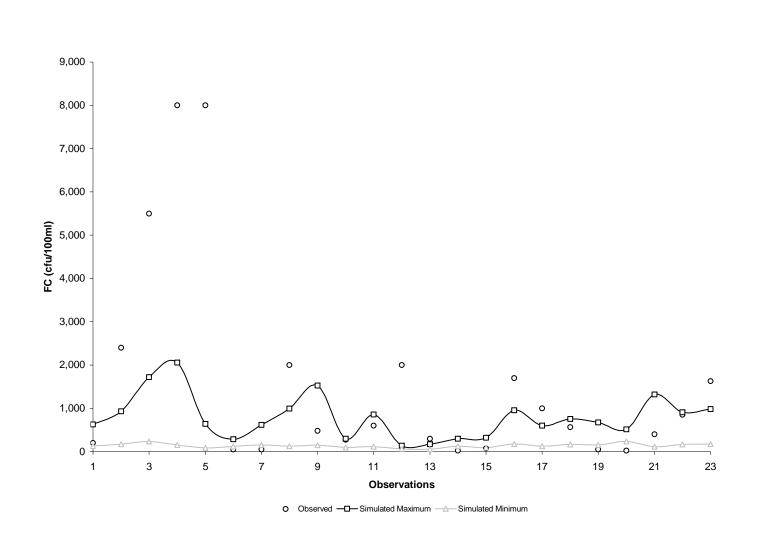
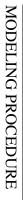



Figure 4.46 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Validation period for subwatershed 2 in the Upper Middle River impairment.

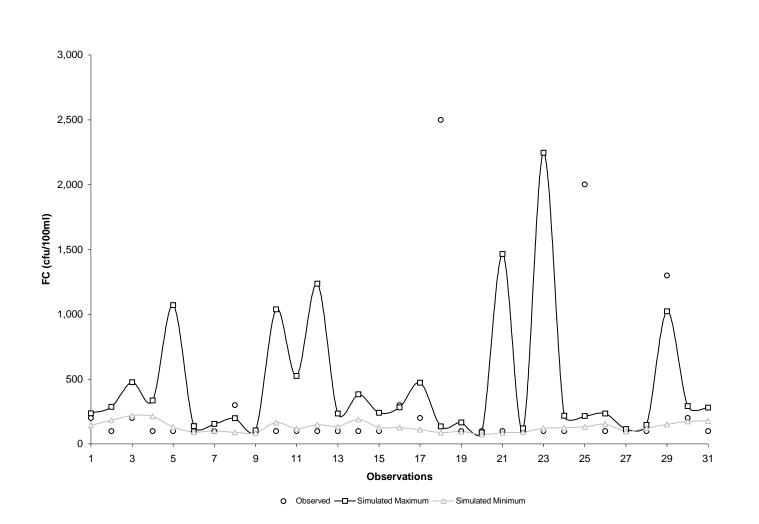


Figure 4.47 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Validation period for subwatershed 7 in the Upper Middle River impairment.

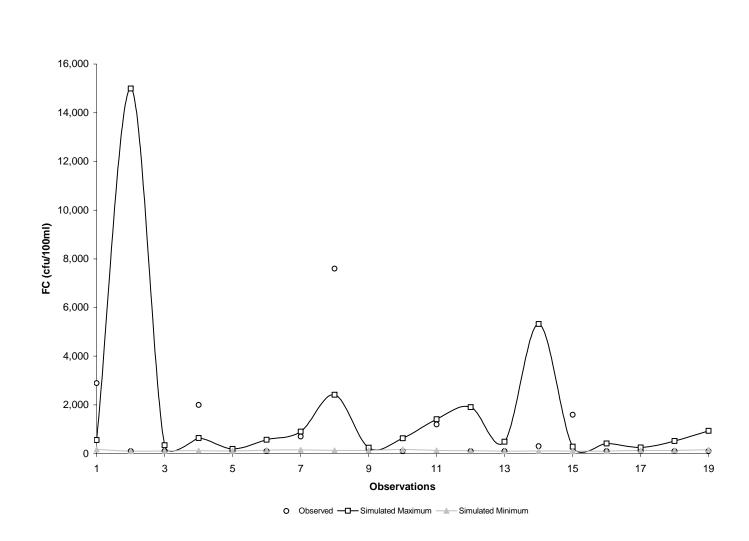


Figure 4.48 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Validation period for subwatershed 14 in the Moffett Creek impairment.

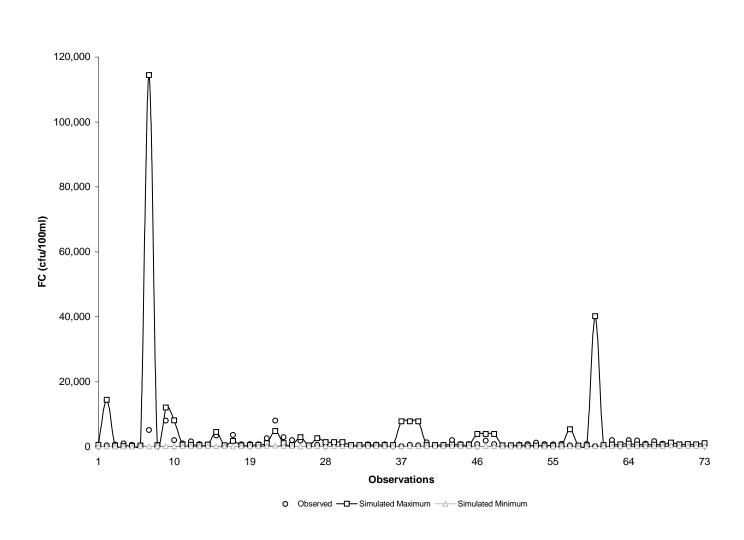
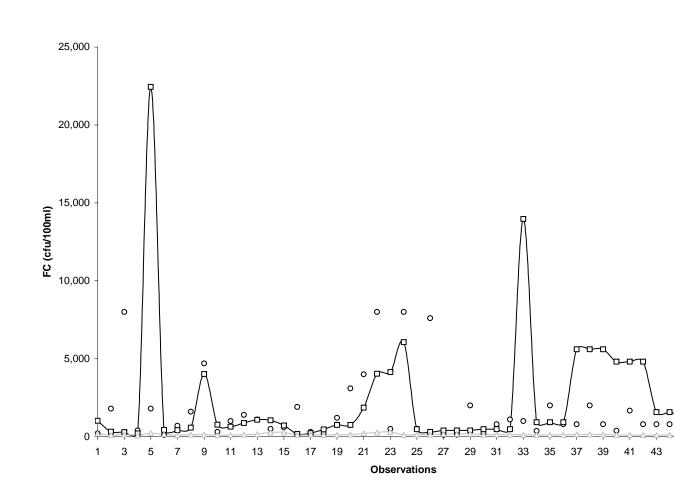
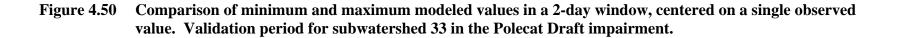




Figure 4.49 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Validation period for subwatershed 23 in the Lewis Creek impairment.

45 47

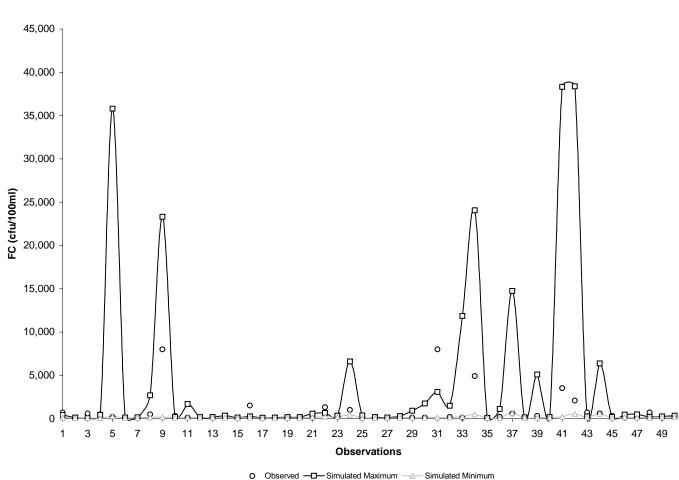


Figure 4.51 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Validation period for subwatershed 36 in the Lower Middle River impairment.

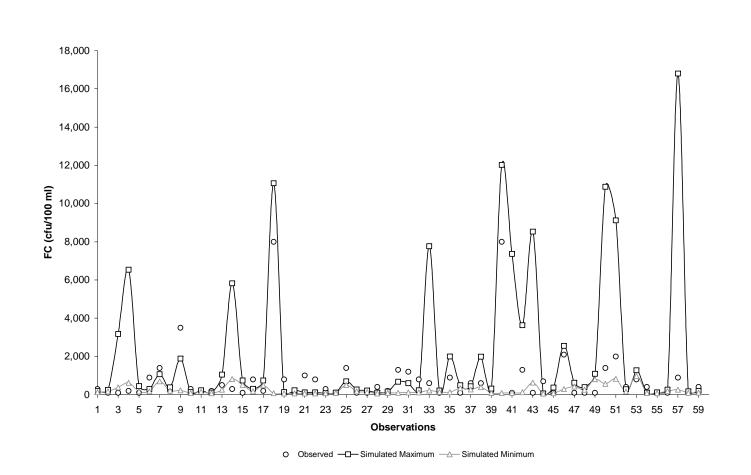
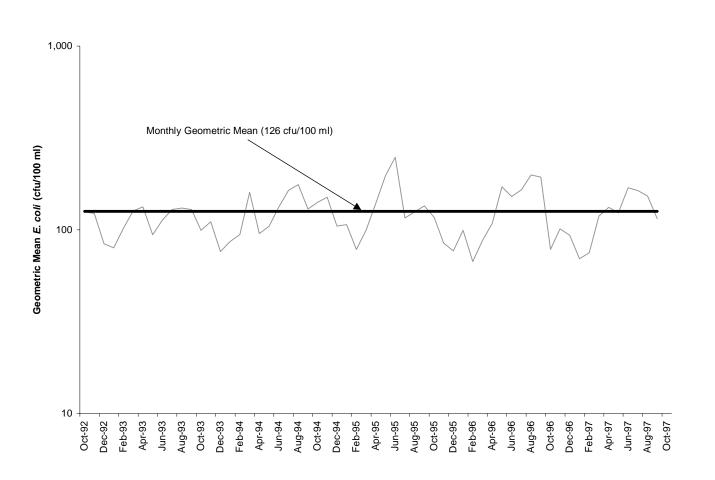
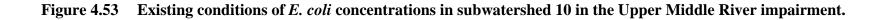




Figure 4.52 Comparison of minimum and maximum modeled values in a 2-day window, centered on a single observed value. Validation period for subwatershed 43 in the Upper South River impairment.

4.8 Existing Loadings

All appropriate inputs were updated to 2003 conditions, as described in Section 4. All model runs were conducted using precipitation data for the representative period used for hydrologic calibration (10/1/92 through 9/30/97). Figure 4.53 through Figure 4.58 show the monthly geometric mean of *E. coli* concentrations in relation to the 126 cfu/100 ml standard. Figure 4.59 through Figure 4.64 show the instantaneous values of *E. coli* concentrations in relation to the 235 cfu/100 ml standard. Appendix B contains tables with monthly loadings to the different landuse areas in each subwatershed.

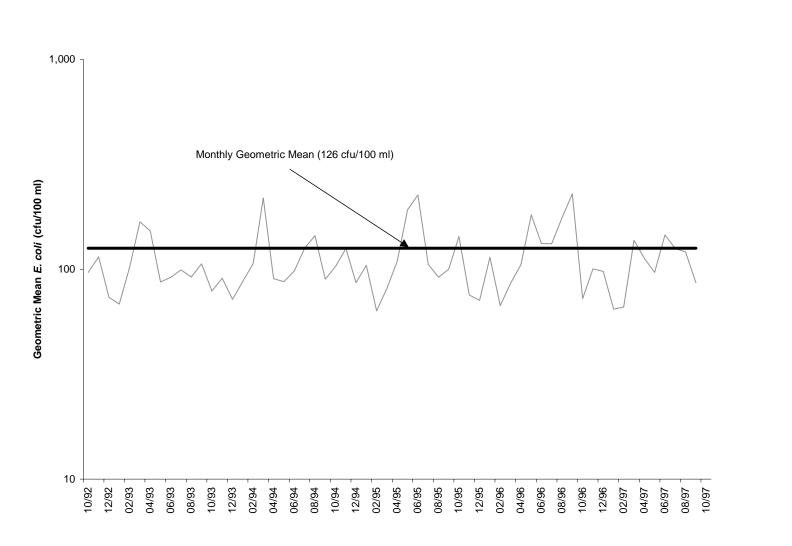


Figure 4.54 Existing conditions of *E. coli* concentrations in subwatershed 17 in the Moffett Creek impairment.

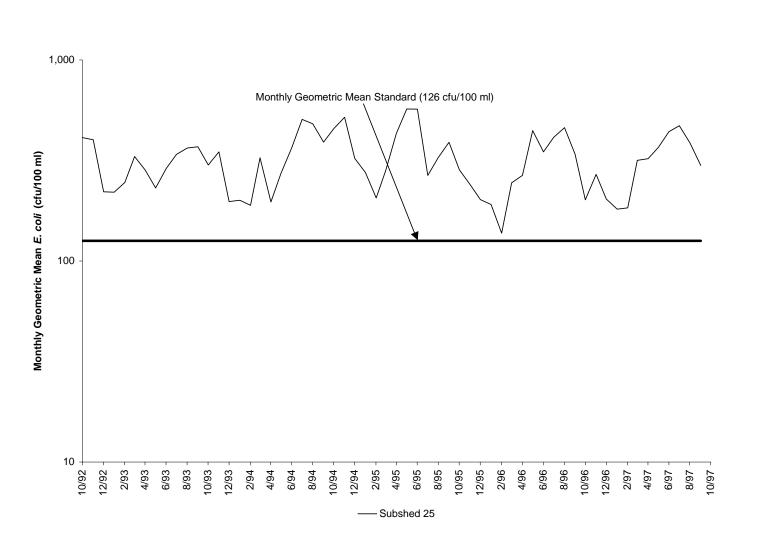


Figure 4.55 Existing conditions of *E. coli* concentrations in subwatershed 25 in the Lewis Creek impairment.

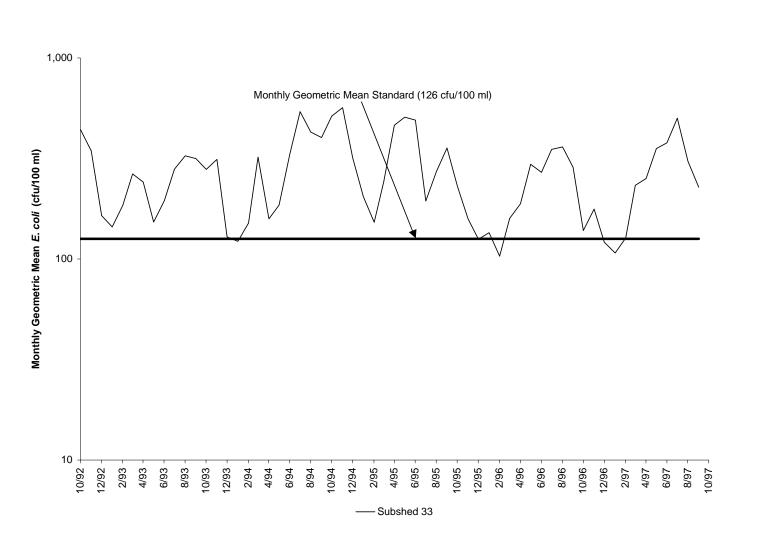


Figure 4.56 Existing conditions of *E. coli* concentrations in subwatershed 33 in the Polecat Draft impairment.

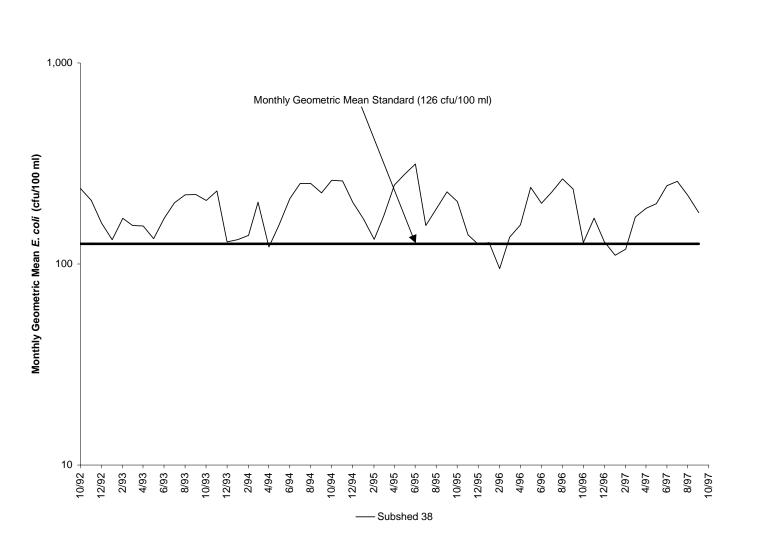
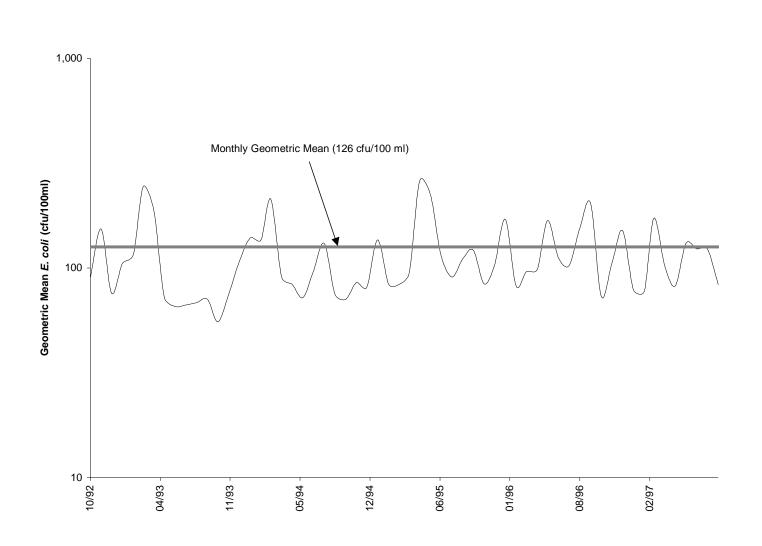
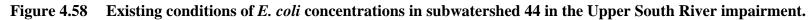




Figure 4.57 Existing conditions of *E. coli* concentrations in subwatershed 38 in the Lower Middle River impairment.

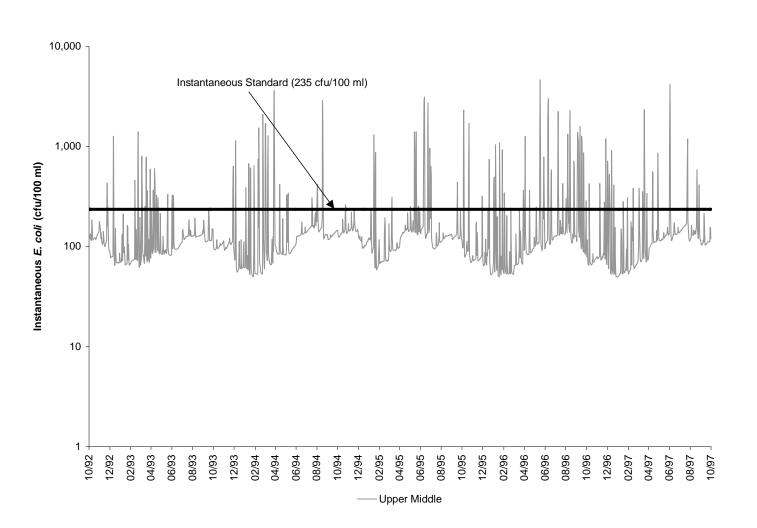


Figure 4.59 Existing conditions of *E. coli* concentrations in subwatershed 10 in the Upper Middle River impairment.

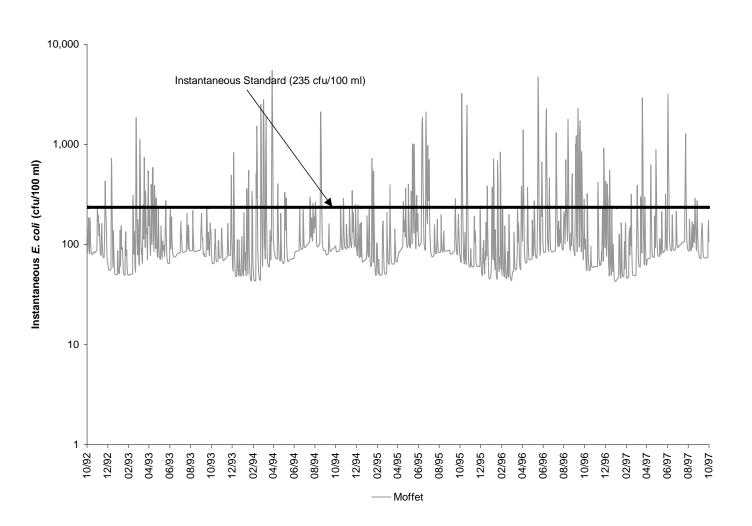


Figure 4.60 Existing conditions of *E. coli* concentrations in subwatershed 17 in the Moffett Creek impairment.

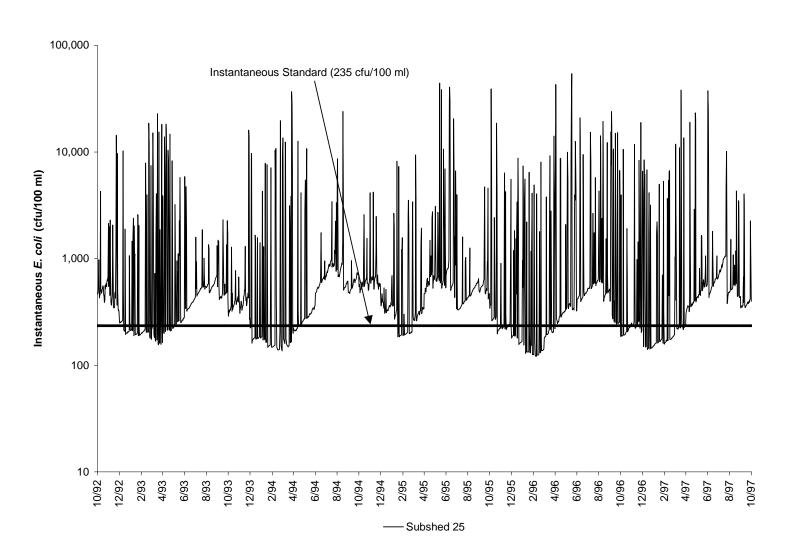


Figure 4.61 Existing conditions of *E. coli* concentrations in subwatershed 25 in the Lewis Creek impairment.

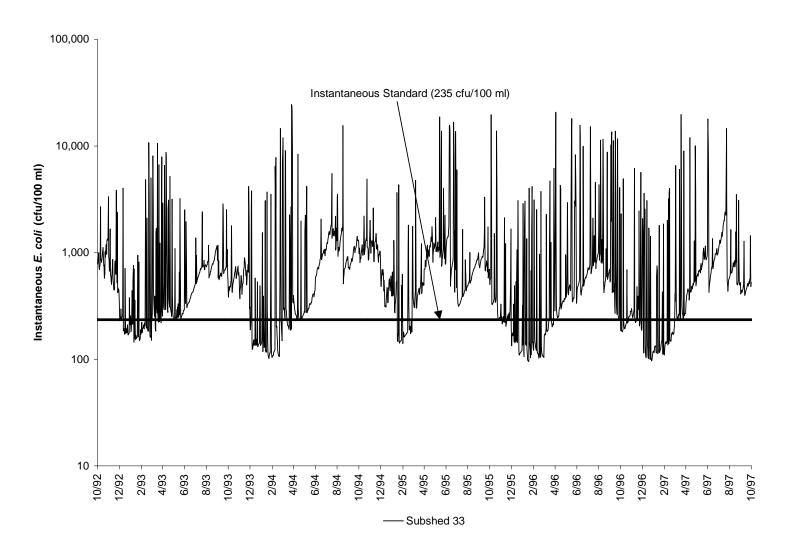


Figure 4.62 Existing conditions of *E. coli* concentrations in subwatershed 33 in the Polecat Draft impairment.

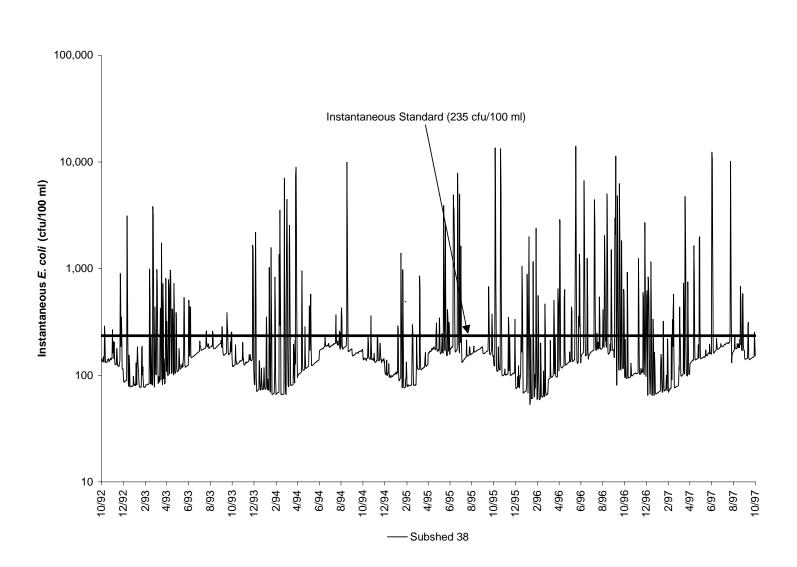


Figure 4.63 Existing conditions of *E. coli* concentrations in subwatershed 38 in the Lower Middle River impairment.

TMDL Development

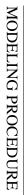


Figure 4.64 Existing conditions of *E. coli* concentrations in subwatershed 44 in the Upper South River impairment.

5. ALLOCATION

Total Maximum Daily Loads (TMDLs) consist of waste load allocations (WLAs, point sources) and load allocations (LAs, nonpoint sources) including natural background levels. Additionally, the TMDL must include a margin of safety (MOS) that either implicitly or explicitly accounts for the uncertainties in the process (e.g. accuracy of wildlife populations). The definition is typically denoted by the expression:

$$TMDL = WLAs + LAs + MOS$$

The TMDL becomes the amount of a pollutant that can be assimilated by the receiving water body and still achieve water quality standards. For fecal bacteria, TMDL is expressed in terms of colony forming units (or resulting concentration). A sensitivity analysis was performed to determine the impact of uncertainties in input parameters.

5.1 Incorporation of a Margin of Safety

In order to account for uncertainty in modeled output, a margin of safety (MOS) was incorporated into the TMDL development process. Individual errors in model inputs, such as data used for developing model parameters or data used for calibration, may affect the load allocations in a positive or a negative way. A margin of safety can be incorporated implicitly in the model through the use of conservative estimates of model parameters, or explicitly as an additional load reduction requirement. The intention of a MOS in the development of a fecal coliform TMDL is to ensure that the modeled loads do not under-estimate the actual loadings that exist in the watershed. An implicit MOS was used in the development of this TMDL. By adopting an implicit MOS in estimating the loads in the watershed, it is insured that the recommended reductions will, in fact, succeed in meeting the water quality standard. Examples of implicit MOS used in the development of this TMDL were:

- allocating permitted point sources at the maximum allowable fecal coliform concentration,
- selecting a modeling period that represented the critical hydrologic conditions in the watershed, and

• modeling biosolids applications at the maximum allowable rate and fecal coliform concentration in all permitted fields.

5.2 Scenario Development

Allocation scenarios were modeled using HSPF. Existing conditions were adjusted until the water quality standard was attained. The TMDLs developed for the Middle and Upper South River watersheds were based on the Virginia State Standard for *E. coli*. As detailed in Section 1.2, the *E. coli* standard states that the calendar month geometric-mean concentration shall not exceed 126 cfu/100 ml, and that a maximum single sample concentration of *E. coli* not exceed 235 cfu/100 ml. According to the guidelines put forth by VADEQ (VADEQ, 2003) for modeling *E. coli* with HSPF, the model was set up to estimate loads of fecal coliform, then the model output was converted to concentrations of *E. coli* through the use of the following equation (developed from a dataset containing n-493 paired data points):

$$\log_2(C_{ec}) = -0.0172 + 0.91905 \cdot \log_2(C_{fc})$$

Where C_{ec} is the concentration of *E. coli* in cfu/100 ml, and C_{fc} is the concentration of fecal coliform in cfu/100 ml.

Pollutant concentrations were modeled over the entire duration of a representative modeling period, and pollutant loads were adjusted until the standard was met (Figures 5.1 through 5.12). The development of the allocation scenario was an iterative process that required numerous runs with each followed by an assessment of source reduction against the water quality target.

5.2.1 Wasteload Allocations

There are eighty-seven point sources currently permitted to discharge in the Middle and Upper South River watersheds (Figure 3.1 and Table 3.1). Of these sources, only thirty-three are permitted for fecal control in the impairment areas. For allocation runs, sources without fecal control permits were modeled as discharging the average recorded value of water, with no *E. coli*. The allocation for these sources is zero cfu/100 ml. The

allocation for the sources permitted for fecal control is equivalent to their current permit levels (*i.e.*, design flow and 126 cfu/100 ml).

5.2.2 Load Allocations

Load allocations to nonpoint sources are divided into land-based loadings from landuses and directly applied loads in the stream (*e.g.*, livestock, sewer overflows, and wildlife). Source reductions include those that are affected by both high and low flow conditions. Within this framework, however, initial criteria that influenced developing load allocations included how sources were linked for representing existing conditions, and results from bacterial source tracking in the area. Land-based NPS loads had the most significant impact during high-flow conditions, while direct deposition NPS had the most significant impact on low flow concentrations. Bacterial source tracking during 2002-2003 sampling periods confirmed the presence of human, pets, livestock and wildlife contamination.

For modeling of allocation scenarios, the fecal load from Christians Creek was to be represented by the allocated loads developed for the Christians Creek Fecal Coliform TMDL. However, the Christians Creek TMDL was developed based on the former fecal bacteria standard, which only required compliance with a 30-day geometric mean standard of 200 cfu-fecal coliform/100ml. The current standard requires compliance with both a geometric mean standard and an instantaneous standard. The allocated loads from Christians Creek, as modeled for the Christians Creek TMDL, would not allow compliance with the instantaneous standard in the Lower Middle River impairment. Under the guidance of VADEQ and EPA, loads from Christians Creek were modeled to represent 126 cfu-*E.coli*/100ml. This ensured compliance with both the geometric mean and instantaneous standards at the outlet of Christians Creek, and allowed for development of an allocation scenario, for the Lower Middle River impairment, that would comply with the current standard.

Allocation scenarios were run in six parts, corresponding to the six impairments –Upper Middle River, Moffett Creek, Lewis Creek, Polecat Draft, Lower Middle River and Upper South River. Tables 5.1 through 5.6 represent a small portion of the scenarios developed to determine the TMDL for each impairment. Scenario 1 in each table describes a baseline scenario that corresponds to the existing conditions in the watershed. Model results indicate that human, livestock and in-stream depositions by wildlife are significant in all areas of the watershed. This is in agreement with the results of BST analysis presented in Appendix C.

Reduction scenarios exploring the role of anthropogenic sources in standards violations were explored first to determine the feasibility of meeting standards without wildlife reductions. Scenario 2 in each table contains 100% reductions in sewer overflows, uncontrolled residential discharges (*i.e.*, straight pipes), and direct livestock deposition. Land-based loads were not addressed in this scenario, nor were direct loads from wildlife. In all cases this scenario improved conditions in the stream, but failed to eliminate exceedances.

Scenario 3 in all of the tables represents the reductions described in scenario 2 with additional reductions of 50% to land loads from urban and agricultural lands. In all cases, exceedances of the standard persist.

Scenario 4 in each table contains reductions of 100% in all anthropogenic land-based loads, 100% reduction in sewer overflows and uncontrolled residential discharges, 100% reduction in direct livestock deposition and a 0% reduction in wildlife direct and land-based loading to the stream. In all but a single case the model predicted that water quality standards will not be met without reductions in wildlife loads. The single exception was Polecat Draft.

Continuing, in each case, from scenario 4, land-based and direct loads were adjusted until a scenario was developed that met both standards. The strategy for scenario development was to reduce loads from anthropogenic sources first, and to address wildlife loads only when additional reductions in anthropogenic sources were unavailable or ineffective in achieving the goal of zero exceedances. Scenario 5 in each table indicates a viable scenario for achieving zero exceedances of the standard.

	Cou	marcom	the opper	muule mitel	mpan	ment.		
	I	Percent Reduction in Loading from Existing Condition Pe						
Scenario Number	Direct Wildlife	NPS Forest/ Water	Direct Livestock	NPS Pasture / Livestock Access / Crops	NPS Res./ Urban	Straight Pipe/ Sewer Overflow	GM > 126 cfu/ 100ml	Single Sample Exceeds 235 cfu/ 100ml
1	0	0	0	0	0	0	100	38
2	0	0	100	0	0	100	12	9
3	0	0	100	50	50	100	0	7
4	0	0	100	100	100	100	0	2
5	0	99	100	99.9	99.9	100	0	0

Table 5.1Allocation scenarios for bacterial concentration with current loading
estimates in the Upper Middle River impairment.

Table 5.2	Allocation scenarios for bacterial concentration with current loading
	estimates in the Moffett Creek impairment.

	I	Percent Reduction in Loading from Existing Condition Percent Violations						
Scenario Number	Direct Wildlife	NPS Forest/ Water	Direct Livestock	NPS Pasture / Livestock Access / Crops	NPS Res./ Urban	Straight Pipe/ Sewer Overflow	GM > 126 cfu/ 100ml	Single Sample Exceeds 235 cfu/ 100ml
1	0	0	0	0	0	0	100	60
2	0	0	100	0	0	100	58	17
3	0	100	100	50	50	100	53	17
4	0	0	100	100	100	100	32	17
5	36	93	100	99.9	99.9	100	0	0

Table 5.3	Allocation scenarios for bacterial concentration with current loading
	estimates in the Lewis Creek impairment.

	F	Percent Reduction in Loading from Existing Condition Percent Violations						
Scenario Number	Direct Wildlife	NPS Forest/ Water	Direct Livestock	NPS Pasture / Livestock Access / Crops	NPS Res./ Urban	Straight Pipe/ Sewer Overflow	GM > 126 cfu/ 100ml	Single Sample Exceeds 235 cfu/ 100ml
1	0	0	0	0	0	0	100	55
2	0	0	100	0	0	100	50	55
3	0	0	100	50	50	100	37	53
4	0	0	100	100	100	100	18	49
5	75	99	100	99.9	99.9	100	0	0

	I	Percent Reduction in Loading from Existing Condition Percent Violations						
Scenario Number	Direct Wildlife	NPS Forest/ Water	Direct Livestock	NPS Pasture / Livestock Access / Crops	NPS Res./ Urban	Straight Pipe/ Sewer Overflow	GM > 126 cfu/ 100ml	Single Sample Exceeds 235 cfu/ 100ml
1	0	0	0	0	0	0	92	46
1	0	0	0	0	0	Ŭ	92	40
2	0	0	100	0	0	100	8	7
3	0	0	100	50	50	100	2	5
4	0	0	100	100	100	100	0	0.10
5	6	0	100	99.99	83	100	0	0

Table 5.4Allocation scenarios for bacterial concentration with current loading
estimates in the Polecat Draft impairment.

Table 5.5	Allocation scenarios for bacterial concentration with current loading
	estimates in the Lower Middle River impairment.

	P	Percent Reduction in Loading from Existing Condition Percent Violations							
Scenario Number	Direct Wildlife	NPS Forest/ Water	Direct Livestock	NPS Pasture / Livestock Access / Crops	NPS Res./ Urban	Straight Pipe/ Sewer Overflow	GM > 126 cfu/ 100ml	Single Sample Exceeds 235 cfu/ 100ml	
1	0	0	0	0	0	0	100	36	
2	0	0	100	0	0	100	47	13	
3	0	0	100	50	50	100	27	9	
4	0	0	100	100	100	100	2	2	
5	0	71	100	99.9	99.9	100	0	0	

Table 5.6	Allocation scenarios for bacterial concentration with current loading
	estimates in the Upper South River impairment.

	P	Percent Reduction in Loading from Existing Condition Percent Violations						
Scenario Number	Direct Wildlife	NPS Forest/ Water	Direct Livestock	NPS Pasture / Livestock Access / Crops	NPS Res./ Urban	Straight Pipe/ Sewer Overflow	GM > 126 cfu/ 100ml	Single Sample Exceeds 235 cfu/
								100ml
1	0	0	0	0	0	0	40	14
2	0	0	100	0	0	100	19	12
3	0	0	100	50	50	100	14	11
4	0	0	100	100	100	100	11	10
5	0	97.5	55	99.9	99.9	100	0	0

Figures 5.1 through 5.12 show graphically the allocated conditions for the geometricmean concentrations and instantaneous concentrations in each impairment. The existing curves are black while the allocated values are overlaid in grey. Tables 5.7 through 5.12 indicate the land-based and direct load reductions resulting from the final location. Table 5.13 shows the final TMDL loads for all of the impairments.

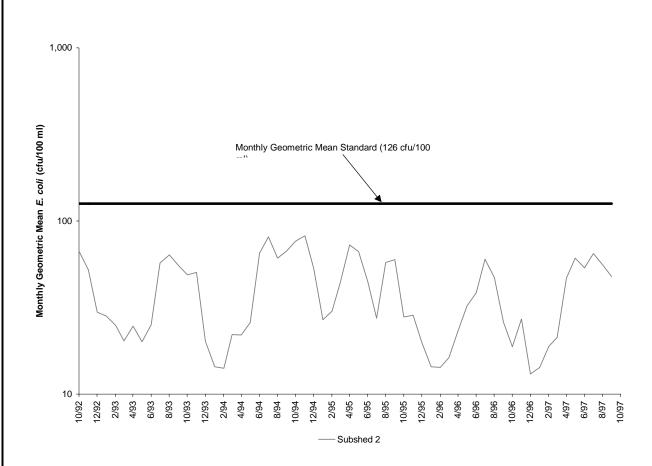
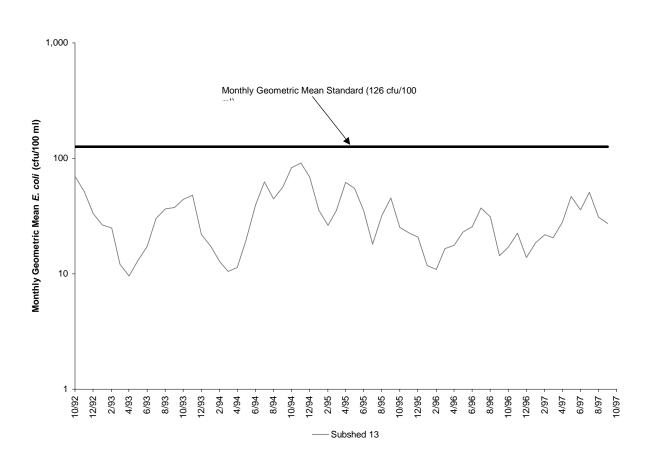
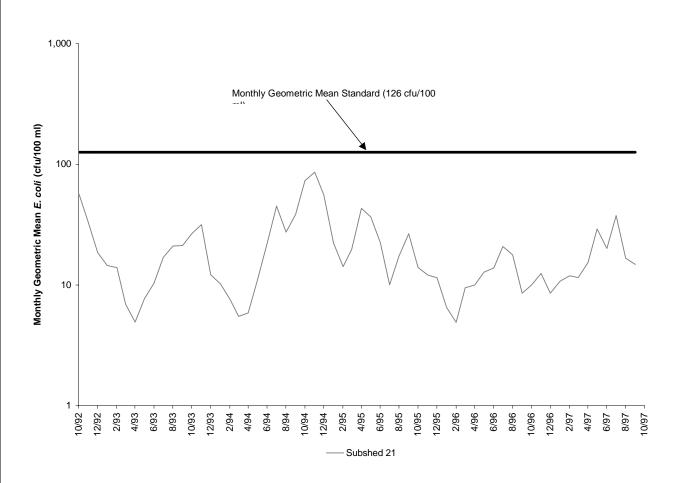
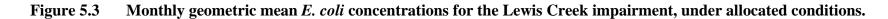
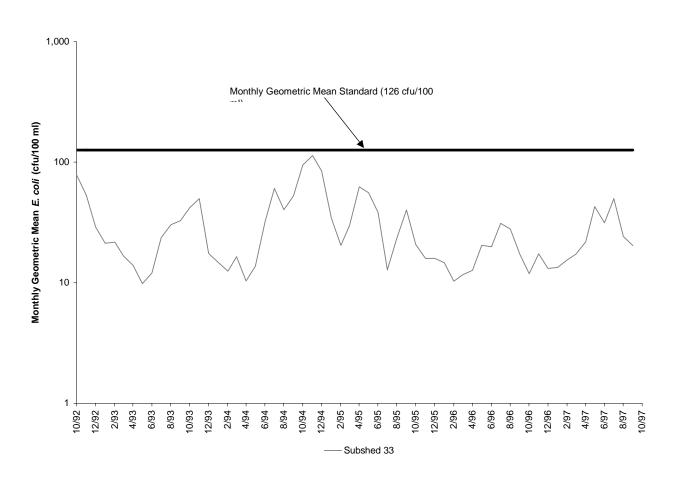
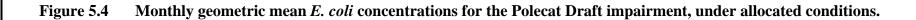


Figure 5.1 Monthly geometric mean *E. coli* concentrations for the Upper Middle River impairment, under allocated conditions.


Figure 5.2 Monthly geometric mean *E. coli* concentrations for the Moffett Creek impairment, under allocated conditions.



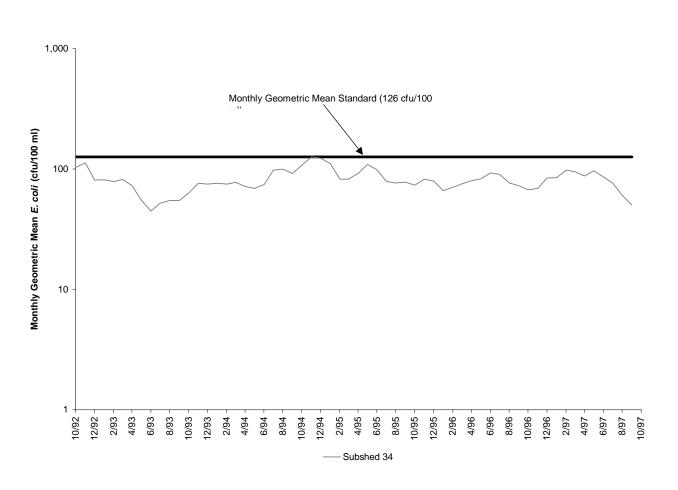


Figure 5.5 Monthly geometric mean *E. coli* concentrations for the Lower Middle River impairment, under allocated conditions.

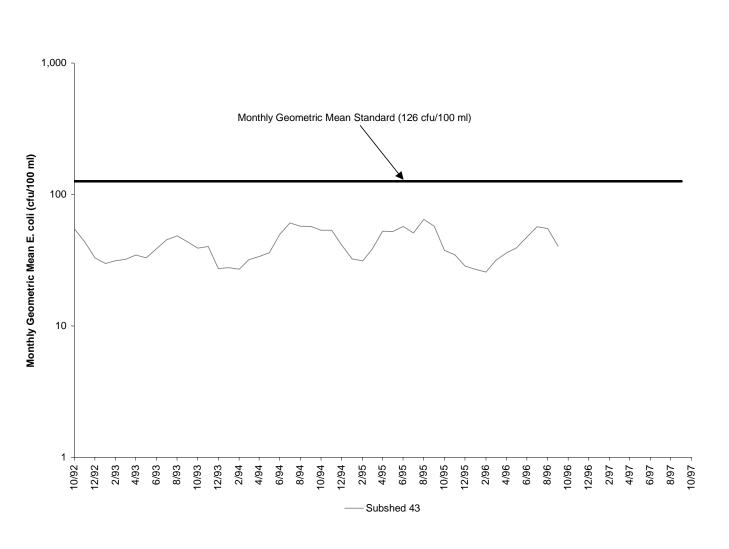
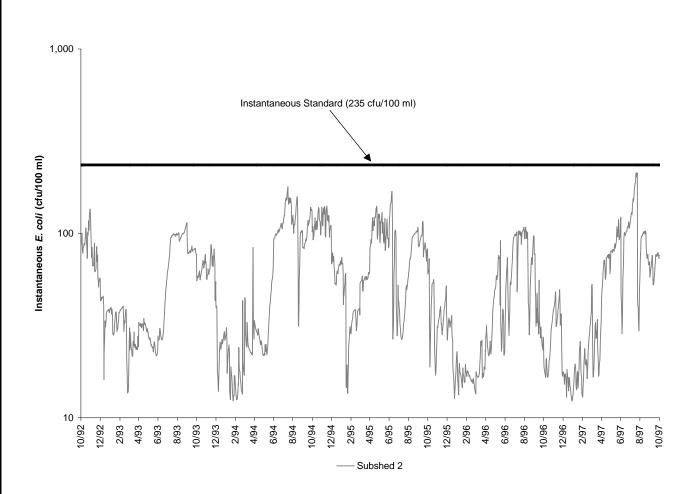
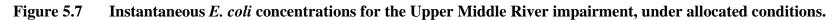
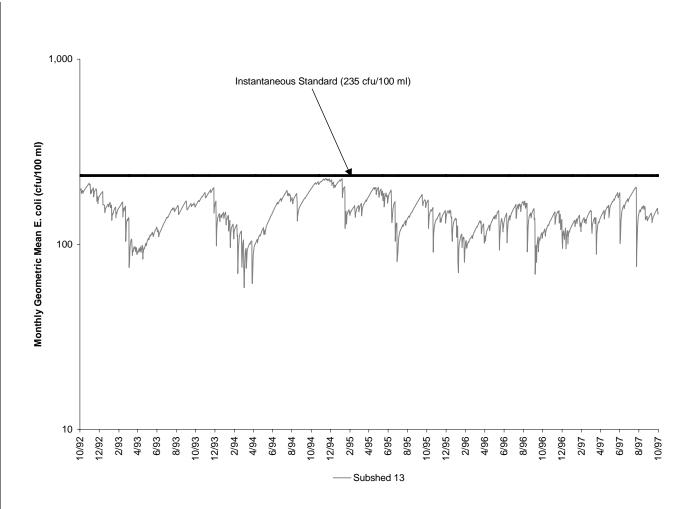
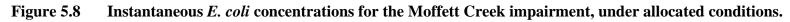
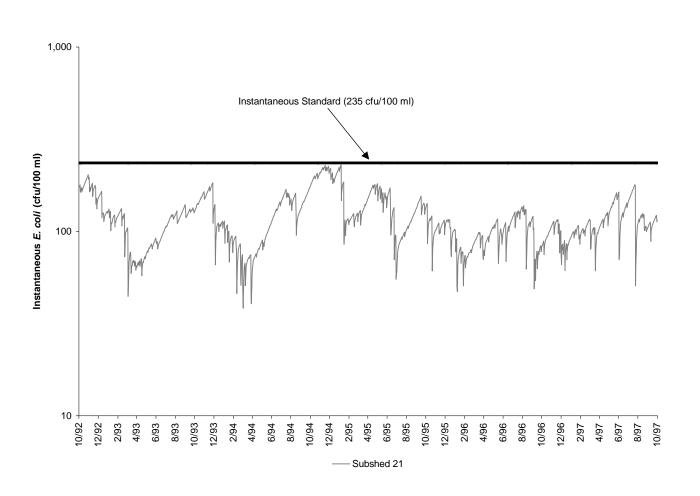
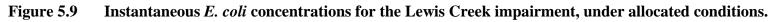
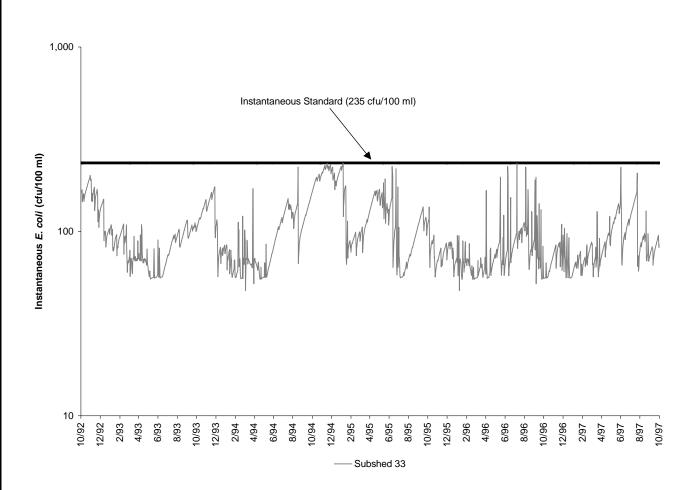
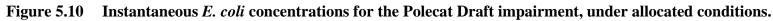






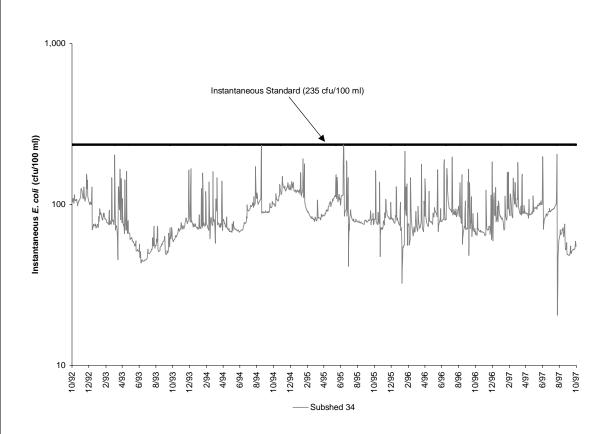
Figure 5.6 Monthly geometric mean *E. coli* concentrations for the Upper South River impairment, under allocated conditions.











Middle River, VA

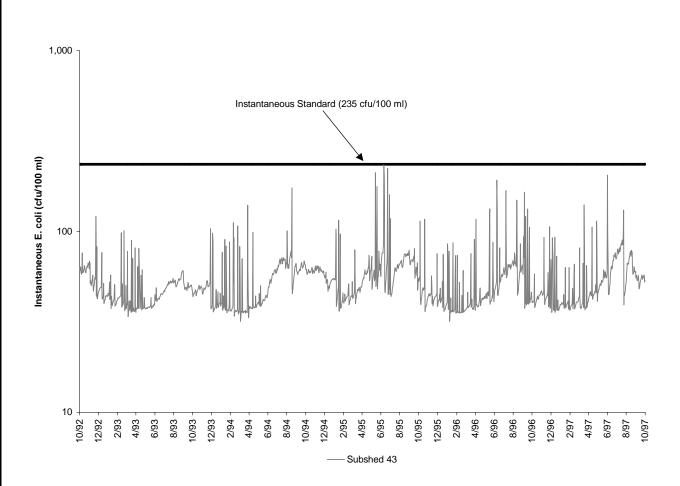


Figure 5.12 Instantaneous *E. coli* concentrations for the Upper South River impairment, under allocated conditions.

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Allocation Run (cfu/yr)	Percent Reduction
Land Based			
Residential	1.42E+14	1.42E+11	99.9
Commercial	6.02E+11	6.02E+08	99.9
Farmstead	1.88E+13	1.88E+10	99.9
Cropland	1.23E+16	1.23E+13	99.9
Livestock Access	7.70E+14	7.70E+11	99.9
Improved Pasture	1.01E+16	1.01E+13	99.9
Unimproved Pasture	2.24E+14	2.24E+11	99.9
Livestock Operations	6.89E+12	6.89E+09	99.9
Forest	1.12E+15	1.12E+13	99
Water	0.00E+00	0.00E+00	0
Direct			
Livestock	1.89E+14	0.00E+00	100
Wildlife	6.13E+13	6.13E+13	0
Straight Pipes and Sewer Overflows	1.33E+12	0.00E+00	100

Table 5.7Land-based and Direct nonpoint source load reductions in the Upper
Middle River impairment for final allocation.

Table 5.8	Land-based and Direct nonpoint source load reductions in the Moffett
	Creek impairment for final allocation.

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Per Allocation Run Redu (cfu/yr)	
Land Based	• • •		
Residential	2.86E+13	2.86E+10	99.9
Commercial	2.68E+10	2.68E+07	99.9
Farmstead	1.18E+13	1.18E+10	99.9
Cropland	7.44E+15	7.44E+12	99.9
Livestock Access	2.58E+14	2.58E+11	99.9
Improved Pasture	3.61E+15	3.61E+12	99.9
Unimproved Pasture	4.01E+14	4.01E+11	99.9
Livestock Operations	4.31E+11	4.31E+08	99.9
Forest	3.88E+14	2.72E+13	93
Water	0.00E+00	0.00E+00	0
Direct			
Livestock	6.66E+13	0.00E+00	100
Wildlife	1.84E+13	1.18E+13	36
Straight Pipes and Sewer Overflows	3.07E+11	0.00E+00	100

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Allocation Run (cfu/yr)	Percent Reduction	
Land Based				
Residential	6.26E+14	6.26E+11	99.9	
Commercial	5.91E+12	5.91E+09	99.9	
Farmstead	3.38E+12	3.38E+09	99.9	
Cropland	5.54E+15	5.54E+12	99.9	
Livestock Access	2.23E+14	2.23E+11	99.9	
Improved Pasture	2.29E+15	2.29E+12	99.9	
Unimproved Pasture	1.66E+13	1.66E+10	99.9	
Livestock Operations	5.35E+09	5.35E+06	99.9	
Forest	1.70E+14	1.70E+12	99	
Water	0.00E+00	0.00E+00	0	
Direct				
Livestock	4.14E+03	0.00E+00	100	
Wildlife	1.97E+13	4.93E+12	75	
Straight Pipes and Sewer Overflows	4.39E+11	0.00E+00	100	

Table 5.9Land-based and Direct nonpoint source load reductions in the Lewis
Creek impairment for final allocation.

Table 5.10	Land-based and Direct nonpoint source load reductions in the Polecat
	Draft impairment for final allocation.

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Allocation Run (cfu/yr)	Percent Reduction
Land Based			
Residential	1.55E+13	2.79E+12	82
Commercial	0.00E+00	0.00E+00	82
Farmstead	2.63E+12	4.74E+11	82
Cropland	2.23E+15	2.23E+11	99.99
Livestock Access	8.84E+13	8.84E+09	99.99
Improved Pasture	1.41E+15	1.41E+11	99.99
Unimproved Pasture	4.80E+11	4.80E+07	99.99
Livestock Operations	7.91E+10	7.91E+06	99.99
Forest	3.47E+13	3.47E+13	0
Water	0.00E+00	0.00E+00	0
Direct			
Livestock	2.18E+13	0.00E+00	100
Wildlife	5.82E+12	5.47E+12	6
Straight Pipes and Sewer Overflows	6.15E+10	0.00E+00	100

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Perce Allocation Run Reduct (cfu/yr)		
Land Based				
Residential	7.35E+13	7.35E+11	99	
Commercial	1.45E+12	1.45E+10	99	
Farmstead	1.06E+13	1.06E+11	99	
Cropland	2.18E+16	2.18E+13	99.9	
Livestock Access	6.45E+14	6.45E+11	99.9	
Improved Pasture	9.52E+15	9.52E+12	99.9	
Unimproved Pasture	1.26E+14	1.26E+11	99.9	
Livestock Operations	8.57E+10	8.57E+07	99.9	
Forest	2.34E+14	6.79E+13	71	
Water	0.00E+00	0.00E+00	0	
Direct				
Livestock	2.03E+14	0.00E+00	100	
Wildlife	7.26E+15	7.26E+15	0	
Straight Pipes and Sewer Overflows	1.93E+11	0.00E+00	100	

Table 5.11Land-based and Direct nonpoint source load reductions in the Lower
Middle River impairment for final allocation.

Table 5.12Land-based and Direct nonpoint source load reductions in the Upper
South River impairment for final allocation.

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Allocation Run (cfu/yr)	Percent Reduction	
Land Based	· • /			
Residential	1.59E+14	1.59E+11	99.9	
Commercial	1.12E+13	1.12E+10	99.9	
Farmstead	1.23E+13	1.23E+10	99.9	
Cropland	1.85E+15	1.85E+12	99.9	
Livestock Access	2.80E+14	2.80E+11	99.9	
Improved Pasture	3.04E+15	3.04E+12	99.9	
Unimproved Pasture	7.09E+13	7.09E+10	99.9	
Livestock Operations	3.30E+11	3.30E+08	99.9	
Forest	7.80E+14	1.95E+13	97.5	
Water	0.00E+00	0.00E+00	0	
Direct				
Livestock	1.77E+15	7.97E+14	55	
Wildlife	3.37E+13	3.37E+13	0	
Straight Pipes and Sewer Overflows	2.57E+12	0.00E+00	100	

Impairment		WLA (cfu/year)	LA (cfu/year)	MOS	TMDL (cfu/year)
Upper Middle River		8.53E+09	3.36E+13		3.36E+13
	VA0060917	5.05E+09			
Moffett Creek		0.0	5.39E+12		5.39E+12
		0.0			
Lewis Creek		3.48E+09	6.96E+12		6.97E+12
	VAG401072	1.74E+09			
	VAG401882	1.74E+09			
Polecat Draft		0.0	2.61E+12		2.61E+12
		0.0			
Lower Middle River		1.22E+13	8.80E+13	it	1.00E+14
	VA0022322	2.61E+11		ic	
	VA0062481	6.09E+10		Implicii	
	VA0064793	1.18E+13		Ĩ	
	VA0084212	5.22E+09		Ι	
	VAG401064	1.74E+09			
	VAG401312	1.74E+09			
	VAG401359	1.74E+09			
	VAG401498	1.74E+09			
	VAG401664	1.74E+09			
	VAG401915	1.74E+09			
South River		1.06E+11	2.02E+13		2.03E+13
	VA0023400	1.04E+11			
	VAG401981	1.74E+09			

Table 5.13Average annual loads (cfu/year) modeled after TMDL allocation in
the Upper Middle River, Moffett Creek, Lewis Creek, Polecat Draft,
and Lower Middle River watersheds.

To determine if the allocation scenarios presented (Tables 5.1 through 5.6, scenario 5) will be applicable in the future, the same scenarios were evaluated with an increase in permitted loads. The permitted loads were increased by a factor of 5 to simulate a population growth. This future scenario resulted in no violations of the geometric or instantaneous *E. coli* standard. The TMDL table that reflects this future scenario is in Appendix G.

PART III: GENERAL WATER QUALITY (BENTHIC) TMDLS

6. WATER QUALITY ASSESSMENT

The Middle River benthic impairments first appeared on Virginia's 1996 303(d) TMDL Priority List and have remained on the 1998 and 2002 303(d) lists. The monitoring for the assessments was performed by VADEQ, and gauged the health of aquatic life through measurement of the eight biometrics discussed in Section 1.4. The benthic impairments in the Middle River watershed include Upper Middle River, Lewis Creek, Christians Creek, and Moffett Creek (Figure 6.1).

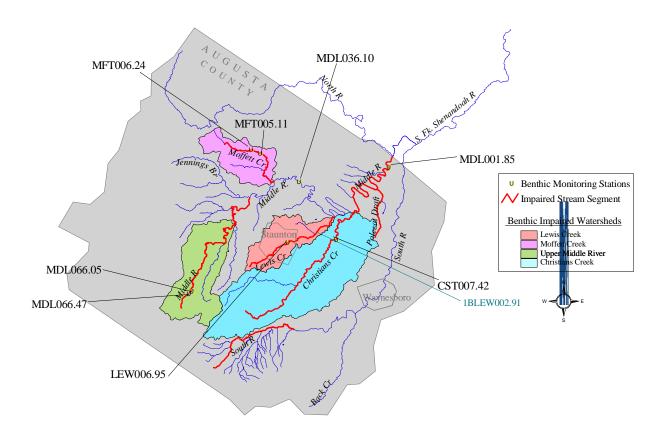


Figure 6.1 Augusta County benthic impairments and benthic monitoring stations.

6.1 Results from the Rapid Bioassessment Protocol II (RBPII) Procedure

Biological monitoring was conducted by VADEQ at seven locations in the benthic impaired stream segments of the Middle River watershed. Benthic macroinvertebrate sampling was

performed on 10 dates between 10/20/94 and 11/1/02 at station 1BCST007.42 (Tables 6.1 through 6.10). Biological sampling was conducted on 6/1/95 and 5/28/02 at stations 1BMDL066.05 and 1BMDL066.47 (Tables 6.11 and 6.14). Benthic macroinvertebrate sampling was performed on two dates, 10/16/00 and 9/24/01 at station 1BMFT005.11 (Tables 6.15 through 6.16), and on six dates between 10/20/94 and 10/6/98 at station 1BMFT006.24 (Tables 6.17 through 6.22). Sampling was performed on two dates, 5/28/02 and 11/1/02, at station 1BLEW000.61 (Tables 6.23 and 6.24), and on 11 dates between 10/20/94 and 11/1/02 at station 1BLEW006.95 (Tables 6.25 through 6.35).

Table 6.1	Biological monitoring conducted by VADEQ on 10/20/94.
-----------	---

Metrics ¹	Valu	e	Ratio	Scor	ores
wieti ics	Reference	Target	Katio	Reference	Target
TR	24	19	0.792	6	3
MFBI	3.23	4.59	0.703	6	3
SCR/FC	4.20	0.68	0.161	6	0
EPT/C	13.40	14.20	1.060	6	6
% DT	23	18	N/A	6	6
EPTI	11	10	0.909	6	6
CLI	N/A	0.500	N/A	6	3
SHR/T	0.173	0.0351	0.203	6	0
Total Score				48	27
% Comp to Reference					56
Biological Condition					SL

Examined Sample: CST007.42—Christians Creek 10/20/1994)/1994
Reference Sample: JKS067.00—Jackson River 10/24/1994	994
T 7 1	

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Metrics ¹	Value Ratio D. A		Value Datio		Scores	
wietrics	Reference	Target	Katio	Reference	Target	
TR	26	20	0.769	6	3	
MFBI	3.77	4.64	0.812	6	3	
SCR/FC	2.33	1.16	0.496	6	3	
EPT/C	6.38	3.39	0.531	6	3	
% DT	11	17	N/A	6	6	
EPTI	13	9	0.692	6	0	
CLI	N/A	0.385	N/A	6	6	
SHR/T	0.142	0.0244	0.172	6	0	
Total Score				48	24	
% Comp to Reference					50	
Biological Condition					MI	

Table 6.2Biological monitoring conducted by VADEQ on 5/1/95.

Examined Sample: CST007.42—Christians Creek 5/1/1995

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.3Biological monitoring conducted by VADEQ on 10/11/95.

Examined Sample: CST007.42—Christians Creek 10/11/1995
Reference Sample: BLP000.79—Bullpasture River 10/26/1995

Metrics ¹	Value		Ratio	Scores	
	Reference	Target	Katio	Reference	Target
TR	20	16	0.800	6	3
MFBI	3.12	4.31	0.725	6	3
SCR/FC	2.23	1.18	0.529	6	6
EPT/C	60.00	17.00	0.283	6	3
% DT	26	22	N/A	6	6
EPTI	10	8	0.800	6	3
CLI	N/A	0.400	N/A	6	6
SHR/T	0.093	0.0364	0.393	6	3
Total Score				48	33
% Comp to Reference					69
Biological Condition					SL

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Metrics ¹	Value		Ratio	Scores	
wietrics	Reference	Target	Katio	Reference	Target
TR	15	13	0.867	6	6
MFBI	4.25	4.43	0.959	6	6
SCR/FC	3.15	2.46	0.781	6	6
EPT/C	24.00	5.14	0.214	6	0
% DT	42	35	N/A	3	3
EPTI	9	6	0.667	6	0
CLI	N/A	0.400	N/A	6	6
SHR/T	0.010	0.0000	0.000	6	0
Total Score				45	27
% Comp to Reference					60
Biological Condition					SL

Table 6.4 Biological monitoring conducted by VADEQ on 10/6/98.

Examined Sample: CST007.42-Christians Creek 10/6/1998

TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.5 Biological monitoring conducted by VADEQ on 5/24/99.

Examined Sample: CST007.42—Christians Creek 5/24/1999	
Reference Sample: BLP000.79—Bullpasture River 5/13/1999	ł

Metrics ¹	Value		Ratio	Scores	
Metrics	Reference	Target	Ratio	Reference	Target
TR	18	17	0.944	6	6
MFBI	4.34	4.48	0.970	6	6
SCR/FC	2.12	21.00	9.917	6	6
EPT/C	1.97	1.65	0.837	6	6
% DT	30	25	N/A	3	6
EPTI	10	7	0.700	6	3
CLI	N/A	0.444	N/A	6	6
SHR/T	0.071	0.0126	0.178	6	0
Total Score				45	39
% Comp to Reference					87
Biological Condition					NI

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index ²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Metrics ¹	Value		Datio	Scores	
Wiethics	Reference	Target	Ratio	Reference	Target
TR	17	17	1.000	6	6
MFBI	4.10	4.13	0.994	6	6
SCR/FC	2.83	1.28	0.454	6	3
EPT/C	21.75	86.00	3.954	6	6
% DT	37	25.68%	N/A	3	6
EPTI	9	7	0.778	6	3
CLI	N/A	0.471	N/A	6	6
SHR/T	0.034	0.0000	0.000	6	0
Total Score				45	36
% Comp to Reference					80
Biological Condition					SL

Table 6.6Biological monitoring conducted by VADEQ on 10/26/99.

Examined Sample: CST007.42-Christians Creek 10/26/1999

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.7Biological monitoring conducted by VADEQ on 4/11/00.

Examined Sample: CST007.42—Christians Creek 4/11/2000	
Reference Sample: BLP000.79—Bullpasture River 5/3/2000	
T 7 1	

Metrics ¹	Value		Ratio	Scores	
	Reference	Target	Katio	Reference	Target
TR	15	19	1.267	6	6
MFBI	4.41	5.05	0.873	6	6
SCR/FC	7.33	3.56	0.486	6	3
EPT/C	3.43	1.01	0.294	6	3
% DT	19	34	N/A	6	3
EPTI	6	10	1.667	6	6
CLI	N/A	0.400	N/A	6	6
SHR/T	0.029	0.0031	0.105	6	0
Total Score				48	33
% Comp to Reference					69
Biological Condition					SL

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Metrics ¹	Valu	e	Ratio	Scores	
Wietrics	Reference	Target	Katio	Reference	Target
TR	12	14	1.167	6	6
MFBI	3.78	4.69	0.804	6	3
SCR/FC	3.94	1.55	0.393	6	3
EPT/C	106.00	6.89	0.065	6	0
% DT	46	24	N/A	3	6
EPTI	9	5	0.556	6	0
CLI	N/A	0.333	N/A	6	6
SHR/T	0.008	0.0000	0.000	6	0
Total Score				45	24
% Comp to Reference					53
Biological Condition					SL

Table 6.8 Biological monitoring conducted by VADEQ on 10/16/01.

Examined Sample: CST007.42-Christians Creek 10/16/2001

TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.9 Biological monitoring conducted by VADEQ on 5/28/02.

Examined Sample: CST007.42-Christians Creek 5/28/2002 Reference Sample: BLP000.79—Bullpasture River 5/6/2002

Metrics ¹	Valu	e	Ratio	Scores	
Metrics	Reference	Target	Katio	Reference	Target
TR	16	18	1.125	6	6
MFBI	3.68	4.85	0.760	6	3
SCR/FC	1.82	4.70	2.575	6	6
EPT/C	36.00	1.48	0.041	6	0
% DT	24	27	N/A	6	6
EPTI	11	7	0.636	6	0
CLI	N/A	0.438	N/A	6	6
SHR/T	0.098	0.0042	0.043	6	0
Total Score				48	27
% Comp to Reference					56
Biological Condition					SL

Metrics ¹	Value		Ratio	Scores	
wietrics	Reference	Target	Katio	Reference	Target
TR	18	15	0.833	6	6
MFBI	3.71	4.22	0.879	6	6
SCR/FC	7.80	2.06	0.265	6	3
EPT/C	106.00	9.83	0.093	6	0
% DT	39	22	N/A	3	6
EPTI	9	6	0.667	6	0
CLI	N/A	0.500	N/A	6	3
SHR/T	0.017	0.0090	0.536	6	6
Total Score				45	30
% Comp to Reference					67
Biological Condition					SL

Table 6.10Biological monitoring conducted by VADEQ on 11/1/02.

Examined Sample: CST007.42-Christians Creek 11/1/2002

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae,

%DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.11Biological monitoring conducted by VADEQ on 6/1/95

Examined Sample: MDL066.47—Middle River 6/1/95 Reference Sample: BIG001.80—Big Run

	Va	alue		Sco	res
Metrics ¹	Reference	Target	Ratio		Reference
TR	27	15	0.556	6	3
MFBI	4.41	5.55	0.795	6	3
SCR/FC	2.64	0.77	0.292	6	3
EPT/C	4.063	1.467	0.361	6	3
% DT	14.7	22.7	N/A	6	6
EPTI	11	7	0.636	6	0
CLI	N/A	0.875	N/A	6	3
SHR/T	0.073	0.055	0.753	6	0
Total Score				48	21
% Comp to Reference					44
Biological Condition					MI

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

Value				Scores		
Metrics ¹	Reference	Target	Ratio	Reference	Target	
TR	27	11	0.407	6	3	
MFBI	4.41	6.21	0.710	6	3	
SCR/FC	2.64	0.22	0.083	6	0	
EPT/C	4.063	1	0.246	6	0	
% DT	14.7	24.4	N/A	6	6	
EPTI	11	2	0.182	6	0	
CLI	N/A	1.5	N/A	6	3	
SHR/T	0.073	0.057	0.781	6	0	
Total Score				48	15	
% Comp to Reference					31	
Biological Condition					MI	

Table 6.12 Biological monitoring conducted by VADEQ on 6/1/95. Examined Sample: MDL066.05-Middle River 6/1/95

TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae,

%DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.13 Biological monitoring conducted by VADEQ on 5/28/02.

Examined Sample: MDL066.05—Middle River 5/28/2002 Reference Sample: STC004.27—Straight Creek 4/24/2002

Metrics ¹	Valu	e	Ratio	Scores	
Metrics	Reference	Target	Katio	Reference	Target
TR	19	14	0.737	6	3
MFBI	3.81	6.49	0.587	6	3
SCR/FC	1.68	0.55	0.325	6	3
EPT/C	7.64	0.14	0.018	6	0
% DT	20	50	N/A	6	0
EPTI	11	2	0.182	6	0
CLI	N/A	0.632	N/A	6	3
SHR/T	0.273	0.0071	0.026	6	0
Total Score				48	12
% Comp to Reference					25
Biological Condition					MI

Metrics ¹	Valu	e	Ratio	Scores	
wietrics	Reference	Target	Katio	Reference	Target
TR	19	13	0.684	6	3
MFBI	3.81	6.82	0.559	6	3
SCR/FC	1.68	0.15	0.088	6	0
EPT/C	7.64	0.16	0.021	6	0
% DT	20	32	N/A	6	3
EPTI	11	3	0.273	6	0
CLI	N/A	0.579	N/A	6	3
SHR/T	0.273	0.0082	0.030	6	0
Total Score				48	12
% Comp to Reference					25
Biological Condition					MI

Table 6.14 Biological monitoring conducted by VADEQ on 5/28/02.

Examined Sample: MDL066.47—Middle River 5/28/2002

TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.15 Biological monitoring conducted by VADEQ on 10/16/00.

Examined Sample: MFT005.11-Moffett Creek 10/16/2000 Reference Sample: STC004.27—Straight Creek 10/13/2000

Metrics ¹	Value		Ratio	Scores	
Metrics	Reference	Target	Katio	Reference	Target
TR	19	13	0.684	6	3
MFBI	3.61	5.33	0.678	6	3
SCR/FC	7.11	1.55	0.218	6	0
EPT/C	20.00	0.85	0.042	6	0
% DT	25	39	N/A	6	3
EPTI	12	6	0.500	6	0
CLI	N/A	0.632	N/A	6	3
SHR/T	0.054	0.0060	0.111	6	0
Total Score				48	12
% Comp to Reference					25
Biological Condition					MI

Metrics ¹	Valu	e	Ratio	Scores	
wietrics	Reference	Target	Katio	Reference	Target
TR	15	17	1.133	6	6
MFBI	3.77	5.21	0.724	6	3
SCR/FC	4.83	1.02	0.211	6	0
EPT/C	35.00	0.62	0.018	6	0
% DT	24	40	N/A	6	3
EPTI	9	6	0.667	6	0
CLI	N/A	0.533	N/A	6	3
SHR/T	0.043	0.0123	0.290	6	3
Total Score				48	18
% Comp to Reference					38
Biological Condition					MI

Table 6.16 Biological monitoring conducted by VADEQ on 9/24/01.

Examined Sample: MFT005.11-Moffett Creek 9/24/2001

TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.17 Biological monitoring conducted by VADEQ on 10/20/94.

Examined Sample: MFT006.24—Moffett Creek 10/20/1994 Reference Sample: STC004.27—Straight Creek 10/11/1994

Metrics ¹	Valu	e	Ratio	Scores	
Metrics	Reference	Target	Katio	Reference	Target
TR	23	18	0.783	6	3
MFBI	3.49	4.79	0.729	6	3
SCR/FC	1.74	0.22	0.123	6	0
EPT/C	16.29	5.10	0.313	6	3
% DT	24	29	N/A	6	6
EPTI	11	6	0.545	6	0
CLI	N/A	0.478	N/A	6	6
SHR/T	0.042	0.0313	0.742	6	6
Total Score				48	27
% Comp to Reference					56
Biological Condition					MI

Metrics ¹	Valu	e	Ratio	Scores	
wieu ies	Reference	Target		Reference	Target
TR	25	17	0.680	6	3
MFBI	3.05	4.51	0.675	6	3
SCR/FC	6.83	1.19	0.174	6	0
EPT/C	18.60	2.15	0.116	6	0
% DT	17	20	N/A	6	6
EPTI	12	7	0.583	6	0
CLI	N/A	0.640	N/A	6	3
SHR/T	0.224	0.0396	0.177	6	0
Total Score				48	15
% Comp to Reference					31
Biological Condition					MI

Table 6.18Biological monitoring conducted by VADEQ on 5/10/95.

Examined Sample: MFT006.24—Moffett Creek 5/10/1995

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.19Biological monitoring conducted by VADEQ on 10/10/95.

Value	D-4-	
Reference Sample: STC004.27-	-Straight Creek 10/26/1995	
Examined Sample: MFT006.24-	-Moffett Creek 10/10/1995	
	-	

Metrics ¹	Valı	16	Ratio	Scores	
Metrics	Reference	Target	Natio	Reference	Target
TR	19	7	0.368	6	0
MFBI	2.89	5.30	0.545	6	3
SCR/FC	1.29	9.75	7.548	6	6
EPT/C	74.00	-1	-0.014	6	0
% DT	21	43	N/A	6	3
EPTI	10	1	0.100	6	0
CLI		0.789		6	3
SHR/T	0.157	0.0192	0.122	6	0
Total Score				48	0
% Comp to Reference					31
Biological Condition					MI

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

Metrics ¹	Valu	e	Ratio	Scores	
Metrics	Reference	Target	Katio	Reference	Target
TR	19	18	0.947	6	6
MFBI	3.37	4.31	0.783	6	3
SCR/FC	0.95	1.47	1.556	6	6
EPT/C	19.67	3.56	0.181	6	0
% DT	21	16	N/A	6	6
EPTI	13	8	0.615	6	0
CLI		0.474		6	6
SHR/T	0.093	0.0612	0.659	6	6
Total Score				48	33
% Comp to Reference					69
Biological Condition					MI

Table 6.20Biological monitoring conducted by VADEQ on 5/8/97.

Examined Sample: MFT006.24—Moffett Creek 5/8/1997

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.21Biological monitoring conducted by VADEQ on 10/14/97.

Examined Sample: MFT006.24—Moffett Creek 10/14/1997 Reference Sample: STC004.27—Straight Creek 9/30/1997

Metrics ¹	Valu	e	Ratio	Scor	es
Metrics	Reference	Target	Katio	Reference	Target
TR	17	13	0.765	6	3
MFBI	3.86	4.96	0.778	6	3
SCR/FC	0.56	0.10	0.178	6	0
EPT/C	63.00	8.22	0.131	6	0
% DT	28	38	N/A	6	3
EPTI	9	6	0.667	6	0
CLI	N/A	0.647	N/A	6	3
SHR/T	0.075	0.0189	0.250	6	3
Total Score				48	15
% Comp to Reference					31
Biological Condition					MI

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

Metrics ¹	Valu	e	Ratio	Scores	
Methics	Reference	Target	Katio	Reference	Target
TR	19	12	0.632	6	3
MFBI	3.22	4.99	0.646	6	3
SCR/FC	0.79	5.20	6.576	6	6
EPT/C	35.25	0.82	0.023	6	0
% DT	22	43	N/A	6	3
EPTI	13	4	0.308	6	0
CLI	N/A	0.632	N/A	6	3
SHR/T	0.284	0.2361	0.831	6	6
Total Score				48	24
% Comp to Reference					50
Biological Condition					MI

Table 6.22 Biological monitoring conducted by VADEQ on 10/6/98.

Examined Sample: MFT006.24-Moffett Creek 10/6/1998

TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.23 Biological monitoring conducted by VADEQ on 5/7/02.

Examined Sample: LEW000.61—Lewis Creek 5/7/2002 Reference Sample: STC004.27—Straight Creek 4/24/2002

Metrics ¹	Value		Ratio	Scor	es
Wiethics	Reference	Target	Katio	Reference	Target
TR	19	10	0.526	6	3
MFBI	3.81	5.26	0.724	6	3
SCR/FC	1.68	9.20	5.463	6	6
EPT/C	7.64	0.11	0.014	6	0
% DT	20	51	N/A	6	0
EPTI	11	4	0.364	6	0
CLI	N/A	0.737	N/A	6	3
SHR/T	0.273	0.0000	0.000	6	0
Total Score				48	15
% Comp to Reference					31
Biological Condition					MI

Metrics ¹	Valu	e	Ratio	Scores	
wietrics	Reference	Target	Katio	Reference	Target
TR	16	19	1.188	6	6
MFBI	2.89	5.59	0.518	6	3
SCR/FC	17.50	4.50	0.257	6	3
EPT/C	13.40	1.32	0.099	6	0
% DT	22	22	N/A	6	6
EPTI	9	8	0.889	6	3
CLI	N/A	0.563	N/A	6	3
SHR/T	0.383	0.0079	0.021	6	0
Total Score				48	24
% Comp to Reference					50
Biological Condition					MI

Table 6.24Biological monitoring conducted by VADEQ on 11/1/02.
Examined Sample: LEW000.61—Lewis Creek 11/1/2002

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.25Biological monitoring conducted by VADEQ on 10/20/94.

Examined Sample: LEW006.95—Lewis Creek 10/20/1994	
Reference Sample: STC004.27—Straight Creek 10/11/1994	

Metrics ¹	Valu	e	Ratio	Scor	es
Metrics	Reference	Target	Katio	Reference	Target
TR	23	6	0.261	6	0
MFBI	3.49	6.12	0.570	6	3
SCR/FC	1.74	0.02	0.013	6	0
EPT/C	16.29	5.50	0.338	6	3
% DT	24	76	N/A	6	0
EPTI	11	1	0.091	6	0
CLI	N/A	0.870	N/A	6	3
SHR/T	0.042	0.0172	0.409	6	3
Total Score				48	12
% Comp to Reference					25
Biological Condition					MI

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

Metrics ¹	Valu	e	Ratio	Scores	
Methics	Reference	Target	Katio	Reference	Target
TR	25	12	0.480	6	3
MFBI	3.05	6.11	0.499	6	0
SCR/FC	6.83	0.05	0.008	6	0
EPT/C	18.60	0.85	0.046	6	0
% DT	17	29	N/A	6	6
EPTI	12	1	0.083	6	0
CLI	N/A	0.720	N/A	6	3
SHR/T	0.224	0.0517	0.231	6	0
Total Score				48	12
% Comp to Reference					25
Biological Condition					MI

Table 6.26Biological monitoring conducted by VADEQ on 5/16/95.Examined Sample: LEW006.95—Lewis Creek 5/16/1995

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.27Biological monitoring conducted by VADEQ on 10/10/95.

Examined Sample: LEW006.95—Lewis Creek 10/10/1995 Reference Sample: STC004.27—Straight Creek 10/26/1995

Matuiaal	Valu	e	Datio	Scor	es
Metrics ¹	Reference	Target	Ratio	Reference	Target
TR	19	7	0.368	6	0
MFBI	2.89	6.28	0.460	6	0
SCR/FC	1.29	0.09	0.070	6	0
EPT/C	74.00	14.83	0.200	6	0
% DT	21	64	N/A	6	0
EPTI	10	1	0.100	6	0
CLI	N/A	0.789	N/A	6	3
SHR/T	0.157	0.0290	0.184	6	0
Total Score				48	3
% Comp to Reference					6
Biological Condition					SI

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

Metrics ¹	Valu	e	Ratio	Scores	
Metrics	Reference	Target	Katio	Reference	Target
TR	27	10	0.370	6	0
MFBI	3.41	6.69	0.510	6	3
SCR/FC	1.00	0.15	0.150	6	0
EPT/C	6.46	14.00	2.167	6	6
% DT	17	42	N/A	6	3
EPTI	17	3	0.176	6	0
CLI		0.741		6	3
SHR/T	0.245	0.0208	0.085	6	0
Total Score				48	15
% Comp to Reference					31
Biological Condition					MI

Table 6.28Biological monitoring conducted by VADEQ on 6/3/96.Examined Sample: LEW006.95—Lewis Creek 6/3/1996

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.29Biological monitoring conducted by VADEQ on 5/5/97.

Examined Sample: LEW006.95—Lewis Creek 5/5/1997
Reference Sample: STC004.27—Straight Creek 5/21/1997

Metrics ¹	Valu	e	Datio	Scor	es
Methics	Reference	Target Ratio Reference 6 0.316 6 6.26 0.538 6 0.00 0.000 6 0.10 0.005 6 65 N/A 6 2 0.154 6 0.842 N/A 6 0.0000 0.000 6	Target		
TR	19	6	0.316	6	0
MFBI	3.37	6.26	0.538	6	3
SCR/FC	0.95	0.00	0.000	6	0
EPT/C	19.67	0.10	0.005	6	0
% DT	21	65	N/A	6	0
EPTI	13	2	0.154	6	0
CLI	N/A	0.842	N/A	6	3
SHR/T	0.093	0.0000	0.000	6	0
Total Score				48	6
% Comp to Reference					13
Biological Condition					SI

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

Metrics ¹	Valu	e	Ratio	Scor	es
wietrics	Reference	Target	Katio	Reference	Target
TR	17	8	0.471	6	3
MFBI	3.86	6.64	0.582	6	3
SCR/FC	0.56	0.05	0.085	6	0
EPT/C	63.00	12.00	0.190	6	0
% DT	28	44	N/A	6	3
EPTI	9	2	0.222	6	0
CLI	N/A	0.647	N/A	6	3
SHR/T	0.075	0.0182	0.241	6	0
Total Score				48	12
% Comp to Reference					25
Biological Condition					SI

Table 6.30Biological monitoring conducted by VADEQ on 9/18/97.Examined Sample: LEW006.95—Lewis Creek 9/18/1997

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.31Biological monitoring conducted by VADEQ on 10/26/99.

Examined Sample: LEW006.95—Lewis Creek 10/26/1999
Reference Sample: STC004.27—Straight Creek 10/13/1999

Metrics ¹	Valu	e	Datio	Scor	es
Wiethics	Reference	erenceTargetRatioReference2160.28668.645.770.63165.560.120.01869.0016.600.57262581N/A61010.1006N/A0.762N/A6	Reference	Target	
TR	21	6	0.286	6	0
MFBI	3.64	5.77	0.631	6	3
SCR/FC	6.56	0.12	0.018	6	0
EPT/C	29.00	16.60	0.572	6	3
% DT	25	81	N/A	6	0
EPTI	10	1	0.100	6	0
CLI	N/A	0.762	N/A	6	3
SHR/T	0.162	0.0194	0.120	6	0
Total Score				48	9
% Comp to Reference					19
Biological Condition					SI

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

Metrics ¹	Valu	e	Ratio	Scores		
wietrics	Reference	Target	Katio	Reference	Target	
TR	20	7	0.350	6	0	
MFBI	4.18	6.11	0.685	6	3	
SCR/FC	1.71	0.14	0.080	6	0	
EPT/C	3.45	0.27	0.078	6	0	
% DT	17	70	N/A	6	0	
EPTI	12	2	0.167	6	0	
CLI	N/A	0.700	N/A	6	3	
SHR/T	0.110	0.0082	0.074	6	0	
Total Score				48	6	
% Comp to Reference					13	
Biological Condition					SI	

Table 6.32Biological monitoring conducted by VADEQ on 4/11/00.Examined Sample: LEW006.95—Lewis Creek 4/11/2000

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.33Biological monitoring conducted by VADEQ on 10/16/00.

Examined Sample: LEW006.95—Lewis Creek 10/16/	2000
Reference Sample: STC004.27—Straight Creek 10/13	/2000

Metrics ¹	Valu	e	Datio	Scor	es
Metrics	Reference	Target Ratio Reference 10 0.526 6 6.00 0.602 6 0.09 0.012 6 1.80 0.090 6 45 N/A 6 2 0.167 6 0.684 N/A 6 0.0180 0.333 6	Target		
TR	19	10	0.526	6	3
MFBI	3.61	6.00	0.602	6	3
SCR/FC	7.11	0.09	0.012	6	0
EPT/C	20.00	1.80	0.090	6	0
% DT	25	45	N/A	6	3
EPTI	12	2	0.167	6	0
CLI	N/A	0.684	N/A	6	3
SHR/T	0.054	0.0180	0.333	6	3
Total Score				48	15
% Comp to Reference					31
Biological Condition					MI

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

Metrics ¹	Valu	e	Datio	Scores		
wietrics	Reference	Target Ratio Reference 9 0.474 6 5.67 0.671 6 0.30 0.180 6 1.21 0.158 6 31 N/A 6 0.579 N/A 6 0.0727 0.267 6 48	Reference	Target		
TR	19	9	0.474	6	3	
MFBI	3.81	5.67	0.671	6	3	
SCR/FC	1.68	0.30	0.180	6	0	
EPT/C	7.64	1.21	0.158	6	0	
% DT	20	31	N/A	6	3	
EPTI	11	3	0.273	6	0	
CLI	N/A	0.579	N/A	6	3	
SHR/T	0.273	0.0727	0.267	6	3	
Total Score				48	15	
% Comp to Reference					31	
Biological Condition					MI	

Table 6.34 Biological monitoring conducted by VADEQ on 5/28/02. Examined Sample: LEW006.95-Lewis Creek 5/28/2002

TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae, %DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Table 6.35 Biological monitoring conducted by VADEQ on 11/1/02.

Metrics ¹	e Sample: STC004.27 Valu		Ratio	Scor	es
Metrics	Reference	Target	Katio	Reference	Target
TR	16	7	0.438	6	3
MFBI	2.89	5.86	0.494	6	0
SCR/FC	17.50	0.03	0.002	6	0
EPT/C	13.40	7.23	0.540	6	3
% DT	22	74	N/A	6	0
EPTI	9	2	0.222	6	0
CLI	N/A	0.750	N/A	6	3
SHR/T	0.383	0.0565	0.147	6	0
Total Score				48	9
% Comp to Reference					19
Biological Condition					SI

¹TR: taxa richness, MFBI: Modified Family Biotic Index, SCR/FC: Scraper/Filter Collector ratio, EPT/C: EPT/Chironomidae,

%DT: percent Dominant Taxon, EPTI: EPT Index, CLI: Community Loss Index

²NI: not impaired, SL: slightly impaired, MI: moderately impaired, SI: severely impaired, N/A=not applicable

Figures 6.2 and 6.3 summarize bioassessment results for the benthic impairments in the Middle River Watershed. The score for Christians Creek was calculated from benthic assessments conducted at VADEQ station 1BCST007.42. The score for the upper Middle River was obtained from benthic assessments conducted by VADEQ at two locations on Middle River very close to the headwaters, stations 1BMDL66.05 and 1BMDL66.47. The score for Moffett Creek was calculated from benthic assessments conducted at VADEQ stations 1BMFT005.11 and 1BMFT006.24. The score for Lewis Creek was obtained from benthic assessments conducted by VADEQ at stations 1BLEW000.61and 1BLEW006.95.

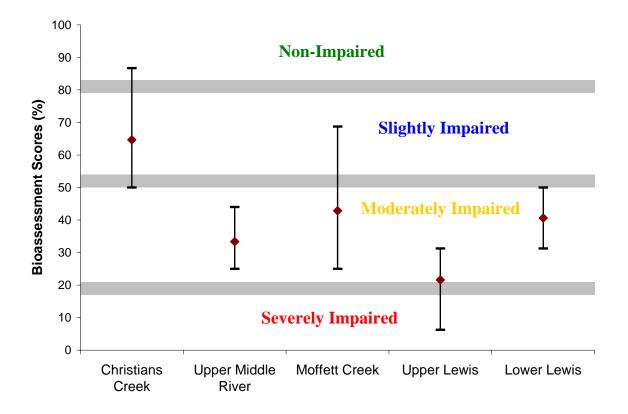


Figure 6.2 Bioassessment scores for benthic impairments in the Middle River Watershed for each impaired segment.

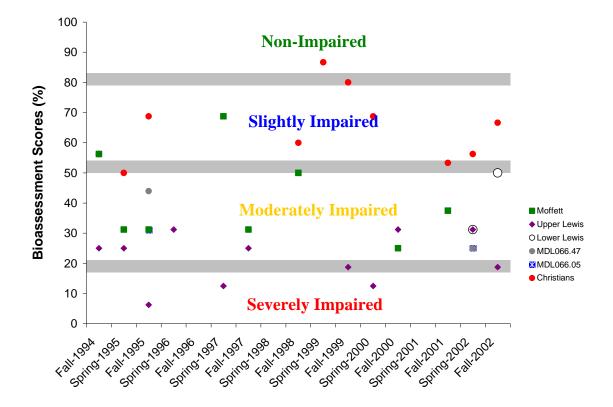


Figure 6.3 Bioassessment scores for benthic impairments in the Middle River Watershed over time.

6.2 Biomonitoring Results using the Stream Condition Index (SCI)

VADEQ is in the process of changing methodologies for assessing the health of aquatic life in Virginia's streams, switching from the Rapid Bioassessment Protocol II (RBPII) to the Stream Condition Index (SCI). Because the Middle River TMDL study took place during the transition period, bioassessment scores have also been calculated using the SCI procedure to compare with results using the RBPII. The SCI procedure, like the RBPII, assesses aquatic life by sampling the benthic community, using the same method for collecting macroinvertebrates and the same eight biometrics as the RBPII for scoring. Unlike the RBPII, the SCI does not require a reference watershed because the score for each metric is calculated from an algorithm based on statistical analysis of the large benthic database for Virginia. Calculation of individual metric scores with the RBPII methodology is based on the ratio of target station score to reference station score and requires the identification of an appropriate reference station, which is often difficult. At this time VADEQ is using an SCI score of 61.5 as the cutoff point for impairment status and stream segments with bioassessment scores below 61.5 are classified as impaired.

SCI scores were calculated using biological monitoring results at five locations on Christians Creek, two locations on Moffett Creek and two locations on the Upper Middle River. SCI scores were not calculated for Lewis Creek because analysis of ambient water quality data and RBPII results indicated that a toxic stressor is probably present in Lewis Creek. Additional inquiries turned up information on legacy pollutants from past industrial activities along the stream as it flows through the City of Staunton. As a result of these findings, further analysis and discussion of the impairment on Lewis Creek is addressed in a separate document (MapTech, 2004).

A summary of data from benthic assessments on Christians Creek is displayed in Table 6.36 and Figure 6.4. Similar data summaries are given for Moffett Creek in Table 6.37 and Figure 6.5, and for the upper Middle River in Table 6.38. A figure was not included for the upper Middle River because only one assessment was carried out at each of the two sites.

		•								
Station	Date	Richness	ЕРТ	% Ephem	% PT-H	% Scraper	% Chiron	% 2Dom	% MFBI	SCI
CST001.31	01/03/96	59.1	63.6	38.8	69.6	52.2	97.1	68.7	86.0	66.9
CST002.64	04/10/95	40.9	45.5	47.8	29.1	52.8	86.2	87.1	80.4	58.7
CST002.64	06/10/97	36.4	36.4	61.6	5.3	21.3	90.6	54.5	75.7	47.7
							CST00	02.64 Mea	n SCI	53.2
CST007.42	10/20/94	86.4	90.9	48.7	41.9	39.6	95.6	100.0	79.6	72.8
CST007.42	05/01/95	90.9	81.8	55.7	22.8	31.5	85.4	98.5	78.8	68.2
CST007.42	10/11/95	72.7	72.7	43.0	40.9	67.4	96.4	82.6	83.7	69.9
CST007.42	10/06/98	59.1	54.5	18.0	20.6	88.8	93.6	66.2	81.9	60.3
CST007.42	05/24/99	77.3	63.6	46.2	3.5	76.1	80.5	79.9	81.2	63.5
CST007.42	10/26/99	77.3	63.6	25.4	60.7	56.7	99.3	77.0	86.4	68.3
CST007.42	04/11/00	86.4	90.9	38.4	14.6	38.5	66.1	64.9	72.8	59.1
CST007.42	10/16/01	63.6	45.5	54.4	0.0	62.7	91.7	84.2	78.0	60.0
CST007.42	05/28/02	81.8	63.6	45.9	8.3	59.6	72.7	69.7	75.8	59.7
CST007.42	11/01/02	68.2	54.5	42.6	48.1	59.6	94.6	83.2	85.1	67.0
							CST00	07.42 Mea	n SCI	64.9
CST010.18	01/03/96	59.1	81.8	17.4	43.6	54.8	89.3	75.7	86.1	63.5
CST013.29	04/10/95	63.6	63.6	77.7	2.7	43.0	886	75.6	84.7	62.4
CST013.29	06/10/97	45.5	45.5	76.9	2.7	26.4	82.7	79.1	77.3	54.5
							CST0	13.29 Mea	n SCI	58.5

Table 6.36Summary of benthic data from Christians Creek.

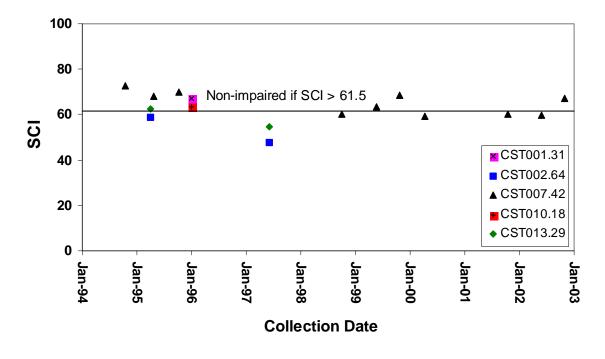


Figure 6.4 Results from biological monitoring on Christians Creek

Figure 6.4 shows that the SCI scores for Christians Creek over the past eight years have been close to the non-impaired cutoff value (61/5) with two of the last three scores slightly less than the cutoff at Station CST007.42. The results using the SCI were essentially identical to results using the RBPII; Christians Creek is classified as impaired.

SCI scores for Moffett Creek, as with the RBPII, clearly indicate impaired conditions. The SCI scores at Moffett Creek Station MFT005.11 are both below the non-impaired cutoff value and two of the last three scores at Station MFT006.24 were also below the cutoff value.

	Juin	iury or bei	itilit u		moneu	CI CCM.				
Station	Date	Richness	ЕРТ	% Ephem	% PT-H	% Scraper	% Chiron	% 2Dom	% MFBI	SCI
MFT005.11	10/16/00	59.1	54.5	14.7	42.3	45.7	60.8	68.7	68.7	51.8
MFT005.11	09/24/01	77.3	54.5	3.4	49.7	38.5	59.7	61.8	70.5	51.9
							MFT0	05.11 Mea	n SCI	51.9
MFT006.24	10/20/94	81.8	54.5	14.3	82.5	20.2	87.5	64.9	76.7	60.3
MFT006.24	05/10/95	77.3	63.6	19.4	61.2	49.5	80.2	95.7	80.8	66.0
MFT006.24	10/10/95	31.8	9.1	0.0	0.0	100.0	0.0	40.2	69.1	31.3
MFT006.24	05/08/97	81.8	72.7	49.9	57.3	46.1	81.6	100.0	83.7	71.7
MFT006.24	10/14/97	59.1	54.5	3.1	100.0	12.2	90.6	49.0	74.1	55.3
MFT006.24	10/06/98	54.5	36.4	14.7	74.1	66.1	56.9	49.1	73.7	53.2
							MFT0	06.24 Mea	n SCI	60.3

Table 6.37Summary of benthic data from Moffett Creek.

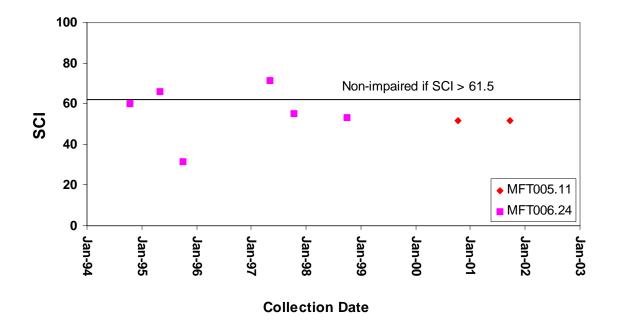


Figure 6.5 Results from biological monitoring on Moffett Creek

SCI scores for the Upper Middle River are shown in Table 6.38 and are far below the cutoff, indicating severely impaired conditions. Not surprisingly, the result is the same using the RBPII.

Table 6.38Summary of benthic data from the Upper Middle River.

Station	Date	Richness	ЕРТ	% Ephem	% PT-H	% Scraper	% Chiron	% 2Dom	% MFBI	SCI
MDL066.05	05/28/02	63.6	18.2	3.2	0.0	8.3	49.6	49.5	51.6	30.5
MDL066.47	05/28/02	59.1	27.3	0.7	0.0	6.6	77.3	62.0	46.8	35.0

7. TMDL ENDPOINT: STRESSOR IDENTIFICATION AND REFERENCE WATERSHED SELECTION

The first step in developing a TMDL is the establishment of measurable in-stream endpoints, which are used to evaluate the attainment of acceptable water quality. In-stream endpoints, therefore, represent the water quality goals that are to be achieved by implementing the load reductions specified in the TMDL. The endpoints for the Middle River watershed benthic impairments were developed using a reference watershed approach. Critical stressors were identified through analysis of ambient water quality data, toxicity tests, and habitat assessment.

7.1 Stressor Identification

7.1.1 Ambient Water Quality Data

Six general water quality parameters (temperature, dissolved oxygen, specific conductance, pH, alkalinity, and hardness) were analyzed to determine their impact as a source of stress for the benthic community. At the levels measured, the general water quality parameters are not sources of stress for the benthic community.

7.1.1.1 Temperature and Dissolved Oxygen

At the stations with multiple readings of three or more, the average temperatures remain well below 20 °C and dissolved oxygen (DO) levels were excellent at all stations, averaging above 9 mg/L with minimum values above 6 mg/L (Table 7.1). The two samples collected at station 1BCST000.13 were collected in July and September 2003. Temperature and DO are not stressors.

TMDL Development

	Summary	uata ioi temperat		· ·			
		Average		DO (mg/L)			
Station	n	Temperature (°C)	Min	Max	Avg	Stdev	
1BMDL060.48	28	15.5	6.7	13.7	10.0	1.8	
1BMDL061.07	31	13.8	7.0	14.0	10.3	2.1	
1BMDL066.05	1	20.0	9.5	9.5	9.5	0.0	
1BMDL066.47	1	19.5	9.2	9.2	9.2	0.0	
1BCST000.13	2	24.2	8.0	8.9	8.5	0.6	
1BCST007.42	3	19.3	7.4	12.3	9.1	2.7	
1BCST012.32	111	13.4	7.2	15.4	10.6	2.2	
1BCST016.48	2	15.6	8.1	11.4	9.8	2.3	
1BCST021.76	111	14.1	6.2	15.1	10.3	1.7	
1BMFT001.43	11	14.7	8.8	13.2	11.0	1.8	
1BMFT006.20	44	14.4	6.0	14.2	10.4	2.2	

Table 7.1Summary data for temperature and DO.

7.1.1.2 Specific Conductance and pH

There is not much data for specific conductance in the impaired stream segments, but conductivity is in the normal range and well below 500 μ mho/cm (Table 7.2). The pH in the impaired stream segments are close to ideal with average values ranging from 7.9 – 8.3, and minimum values at or above 6.1. There is less than a 10% occurrence of pH values exceeding 9 for each station. Specific conductance and pH levels are not stressors.

	-	_		-		
		Average				
Station	n	Specific Conductance	Min	Max	Avg	Stdev
1BMDL060.48	28	216 (n=2)	7.4	8.6	8.0	0.3
1BMDL061.07	31	Not Available	7.1	8.7	8.0	0.3
1BMDL066.05	1	321	8.2	8.2	8.2	0.0
1BMDL066.47	1	335	8.2	8.2	8.2	0.0
1BCST000.13	2	456	8.3	8.3	8.3	0.0
1BCST007.42	3	464	8.1	8.4	8.2	0.2
1BCST012.32	206	259 (n=106)	6.1	9.5	8.2	0.5
1BCST016.48	2	340	7.8	8.3	8.1	0.4
1BCST021.76	116	340 (n=1)	6.5	8.8	8.0	0.3
1BMFT001.43	11	247 (n=1)	7.1	8.6	8.0	0.4
1BMFT006.20	28	Not Available	6.7	9.1	7.9	0.5

Table 7.2Summary data for specific conductance and pH.

7.1.1.3 Alkalinity and Hardness

Data on alkalinity and hardness for the impaired stream segments are displayed in Table 7.3 and Table 7.4. Alkalinity provides protection against acidification of stream water and hardness

diminishes the toxicity of heavy metals to aquatic organisms. The average values are typical for stream water in areas with limestone deposits. Alkalinity and hardness are not stressors.

Station	n		Alkalinity (n	ng/L as CaCO ₃)	
Station	n	Min	Max	Avg	Stdev
1BMDL060.48	15	88.5	154.0	131.0	18.2
1BMDL061.07	30	32.8	163.0	120.0	29.1
1BCST012.32	176	9.0	555.0	247.0	34.2
1BCST021.76	101	21.2	208.4	220.7	26.6
1BMFT006.20	42	21.1	192.0	102.5	47.2

Table 7.3	Summary da	ta for alkalinity.
-----------	------------	--------------------

Table 7.4	Summary data for hardness.
-----------	----------------------------

Station	Station n Hardness (mg/L as)
Station	n	Min	Max	Avg	Stdev
1BMDL060.48	22	85.7	171.0	131.3	19.6
1BMDL061.07	30	67.0	178.0	131.3	29.1
1BCST012.32	172	24.0	228.8	42.2	42.2
1BCST021.76	109	125.0	239.0	27.3	27.3
1BMFT001.43	7	59.2	203.0	148.9	56.9
1BMFT006.20	42	27.4	198.0	111.9	50.8

7.1.1.4 Nutrients

Nutrient enrichment in the impaired segments was assessed by analyzing data on nitrate, total phosphorus (TP), and total suspended solids (TSS). The data summaries are shown in Table 7.5–Table 7.7 for nitrate, TP and TSS, respectively. Nitrate levels, averaging approximately 1 mg/L, are not excessive. Total phosphorus (TP) is somewhat elevated at averages from 0.1 - 0.2 mg/L but is not considered excessive. TSS was included as an indicator of NPS pollution because nutrient adsorption to TSS is assumed to be the primary pathway for nutrient transport. The average TSS values are less than 40 mg/L, which are not excessive, but the maximum values (over 150 mg/L) at four stations indicate that large inputs of silt do occur, probably during stormwater runoff events.

Station	n	Nitrate (mg/L)				
Station	n	Min	Max	Avg	Stdev	
1BMDL060.48	27	0.55	1.73	1.05	0.30	
1BMDL061.07	30	0.41	1.83	1.09	0.31	
1BCST012.32	231	0.15	5.04	1.87	0.57	
1BCST021.76	112	0.04	3.50	1.67	0.46	
1BMFT001.43	11	0.07	2.58	0.90	0.90	
1BMFT006.20	42	0.18	1.90	0.94	0.47	

Table 7.5Summary data for nitrate.

Table 7.6Summary data for TP.

Station	n		TP	TP (mg/L)		
Station	n	Min	Max	Avg	Stdev	
1BMDL060.48	27	0.01	0.20	0.07	0.05	
1BMDL061.07	30	0.10	0.40	0.12	0.07	
1BCST000.13	2	0.10	0.11	0.11	0.01	
1BCST007.42	2	0.11	0.17	0.14	0.04	
1BCST012.32	230	0.10	1.00	0.21	0.14	
1BCST021.76	112	0.01	0.60	0.09	0.06	
1BMFT001.43	11	0.01	0.04	0.02	0.01	
1BMFT006.20	42	0.01	0.20	0.09	0.05	

Table 7.7Summary data for TSS.

Station		TSS (mg/L)					
Station	n	Min	Max	Avg	Stdev		
1BMDL060.48	26	3.0	161.0	29.7	31.8		
1BMDL061.07	30	3.0	380.0	40.1	67.5		
1BCST000.13	2	5.0	15.0	10.0	7.1		
1BCST007.42	3	3.0	18.0	11.0	7.5		
1BCST012.32	234	1.0	321.0	24.1	41.5		
1BCST021.76	114	3.0	560.0	31.6	56.7		
1BMFT001.43	11	3.0	10.0	4.3	2.3		
1BMFT006.20	42	2.0	32.0	5.6	6.4		

Data from a diurnal DO study on the impaired streams are displayed in Figure 7.1 – Figure 7.3. There is a diurnal swing of 42% in the extent of oxygen saturation, from a minimum of 67% saturation to a maximum of 109% saturation in the Upper Middle River. The significant diurnal pattern indicates that nutrient enrichment has increased primary production in Middle River. However, the minimum DO level recorded for the Upper Middle River was 5.6 mg/L and is above the water quality standard for DO. The diurnal fluctuations for Christians Creek and Moffett Creek are not as great, and minimum DO levels are above the water quality standard for DO. Diurnal DO studies are conducted in impaired stream segments because the diurnal DO

TMDL Development

swing becomes more severe as nutrient levels increase. Excessive nutrient levels are probably not a major stressor but have the potential to impact the benthic community.

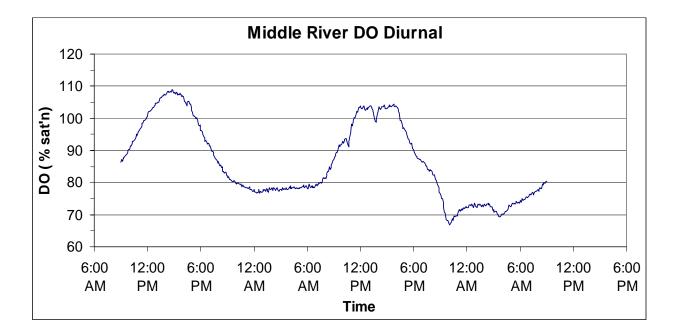


Figure 7.1 Diurnal DO Study on Middle River.

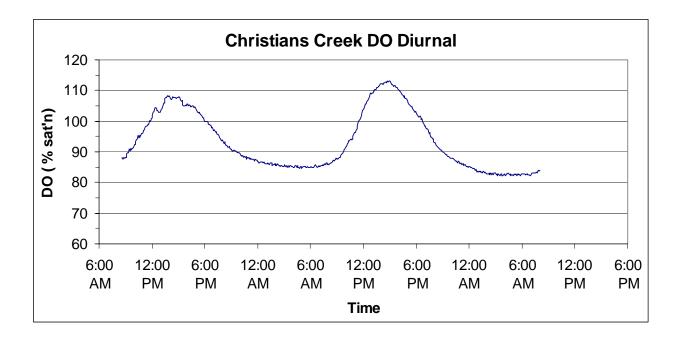


Figure 7.2 Diurnal DO Study on Christians Creek.

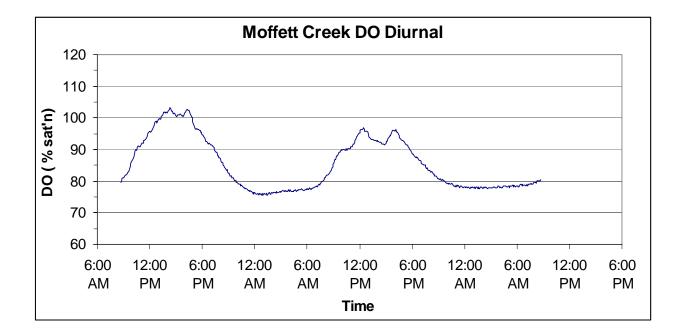


Figure 7.3 Diurnal DO Study on Moffett Creek.

7.1.1.5 Ammonia

Ammonia is both a nutrient and a toxicant, but was not detected (nd) in more than a third of the ambient water samples collected in the impaired segments (detection limit = 0.04 mg/L). The data summary is shown in Table 7.8. Ammonia was never measured above 0.42 mg/L, well below the chronic toxicity criteria for aquatic life. Ammonia is not a stressor.

Station	n		Ammonia	Ammonia (mg/L as N)		
Station	n	Min	Max	Avg	Stdev	
1BMDL060.48	27 (10 nd)	0.04	0.14	0.06	0.03	
1BMDL061.07	30 (14 nd)	0.04	0.18	0.06	0.03	
1BCST000.13	2 nd	0.04	0.04	0.04	0.00	
1BCST007.42	2 nd	0.04	0.04	0.04	0.00	
1BCST012.32	136 (75 nd)	0.04	0.42	0.06	0.05	
1BCST021.76	112 (69 nd)	0.04	0.12	0.05	0.02	
1BMFT001.43	11 (9 nd)	0.04	0.07	0.04	0.01	
1BMFT006.20	42 (33 nd)	0.04	0.08	0.04	0.01	

Table 7.8Summary data for ammonia.

7.1.1.6 Metals

Water samples from the Upper Middle River, Christians Creek, and Moffett Creek have not been analyzed for metals since 1982, but sediment samples have been collected. Three sediment samples from the Upper Middle River were collected, one at station 1BMDL060.48 (August 2000) and two at station 1BMDL061.07 (June 1992, July 1996), and analyzed for metals. Five sediment samples from Christians Creek were collected since 1991, two at station 1BCST012.32 (July 1991, July 1999) and three at station 1BCST021.76 (June 1992, July 1996, July 1999). Three sediment samples from Moffett Creek have been collected at station 1BMFT006.20 (June 1992, July 1996, August 2000). Antimony, beryllium, mercury, and thallium were not detected in any of the samples. Average concentrations of metals detected are shown in Table 7.9 for each stream. Concentrations were all well below the low and median NOAA Effects Range. Metal toxicity is not a stressor.

			-		
M-4-1	Average Sedi	NOAA Effect Range (mg/kg)			
Metal	Upper Middle River	Christians Creek	Moffett Creek	Low	Median
Arsenic	nd	6	6	8	70
Chromium	11	17	16	34	270
Copper	7	36	21	81	370
Lead	8	18	16	47	223
Nickel	9	14	20	21	52
Zinc	22	41	55	150	410

Table 7.9Metals detected in stream sediment samples.

7.1.1.7 Toxic Organics

Water from the Upper Middle River, Christians Creek, and Moffett Creek was not analyzed for toxic organics after 1982, but the same sediment samples described in the preceding section were analyzed for a wide array of toxic organics: aldrin, chlordane, dieldrin, endrin, heptachlor, DDD, DDT, DDE, PCBs, and pentachlorophenol. Sediment quality guidelines developed by Long et al. (1995), based on data compiled from numerous studies in the United States that included sediment contaminant and biological effects information, were used in the analysis of toxic organics. From Long et al.'s study, the NOAA Effects Range-Median is the concentration equivalent to the 50th percentile of the compiled study data. According to that study, concentrations above the Effects Range-Median are "frequently" associated with adverse affects.

None of the toxic organics were at detectible levels in the sediment samples from the Upper Middle River, station 1BCST021.76 in Christians Creek, or Moffett Creek. Toxic organics are not stressors in these stream segments.

The sediment sample collected in July 1991 from station 1BCST012.32 was analyzed for toxic organics and did contain chlordane and PCBs at detectible levels. Chlordane was detected at 1000 μ g/kg, much higher than the NOAA's Effects Range – Median of 6 μ g/kg. The PCBs value in the sediment sample was detected at 1000 μ g/kg, which is also well above NOAA's Effects Range – Median of 180 μ g/kg. Toxic organics are a potential stressor in Christians Creek but data from recent sediment samples are necessary to reach a more confident conclusion.

7.1.2 Water-Column Toxicity Tests

Chronic toxicity tests were performed in March 2003 on water collected from Lewis Creek at the Route 931 bridge (ambient station 1BLEW002.91), Moffett Creek at the Route 733 bridge (ambient station 1BMFT001.43), and the Upper Middle River at the Route 705 bridge (ambient station 1BMDL060.48), but the results were not conclusive (EPA, 2003). The tests included measuring survival and growth of fathead minnows (*Pimephales promelas*) and measuring survival and reproduction of a small "water flea" (*Ceriodaphnia dubia*).

In the survival/reproduction test using *Ceriodaphnia dubia*, there was not a significant statistical difference in either metric between the control group and the test group exposed to Middle River water. There was a significant difference in growth between the control group and test group of *Pimephales promelas*. However, the results are probably not indicative of a true biological effect for several reasons. First, the weight of fish in the test group was well above the minimum weight required for acceptable control treatments and typical for control treatments within this laboratory. Secondly, the control treatment, to which the test group was compared to determine an effect, exhibited greater growth than typically experienced in this laboratory. This greater than usual control response resulted in a statistical difference between control and test treatments, where the test treatment exhibited growth equivalent to control treatments in typical tests. Survival results (both as % survival and transformed % survival) for the fathead minnows are displayed in Table 7.10

Group	Group Mean Weight (mg)	% Survival	% Survival Transformed*			
Control	0.749	100	1.412			
Lewis Creek	0.278	60	0.891			
Moffett Creek	0.529	85	1.202			
Middle River	0.468	77.55	1.099			
	*Transform: Arc Sin (Square Root (Y))					

Table 7.10 Results from Chronic Toxicity Tests with Fathead Minnows.

7.1.3 Habitat Conditions

7.1.3.1 Upper Middle River

Results from the habitat assessments for the Upper Middle River are displayed in Figure 7.4. Habitat assessments have been carried out on the Upper Middle River at two stations; 1BMDL066.05 and 1BMDL066.47, both near the headwaters. The stations bracket Cockran Spring, rated as moderately impaired, and organic solids were identified as the stressor. Only the most recent survey was available in the EDAS database. The reference site was Strait Creek (Station 1ASTC004.27) in Highland County and the assessment results vary considerably from metric to metric.

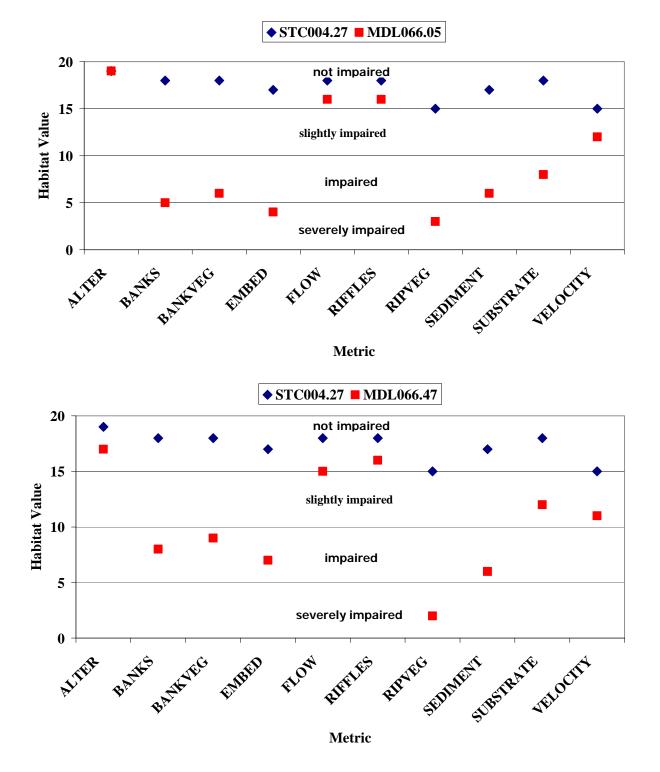


Figure 7.4 Results from the habitat assessment for the Upper Middle River.

At both stations, the stream channel was found to be in good physical condition with little alteration of the channel, good flow, and with adequate riffles and velocity. There was a difference in substrate score between the two stations. The upstream station substrate was only slightly impaired but the downstream station substrate was impaired. The decreasing substrate quality is typically a result of silt inputs and probably caused by solids from Cockran Spring. Embeddedness was greater at the downstream station as well and is a strong indicator of excessive siltation. Scores from the other metrics were not satisfactory. At Station 1BMDL066.05, the following habitat metrics compared poorly to the reference station:

BANKS (Bank Stability) – This metric measures whether banks are eroded or have a high potential for erosion. The Middle River monitoring station 1BMDL066.05 was rated poor for this metric. This means that 60 - 100% of the streambank has evidence of erosion. Erosion is an important source of sediment deposition in the stream.

BANKVEG (Bank Vegetative Protection) – This metric is indicative of the type and quality of bank vegetation. For example trees have root systems that can protect the bank from erosion. The lack of proper streambank vegetation is another indication of erosion potential. This metric was rated as marginal for Upper Middle River at the 1BMDL066.05 monitoring station.

EMBED (Embeddedness) – Is a measure of extent to which the suitable habitat is covered or sunken into sediment. Therefore, a low embeddedness score indicates a significant loss of habitat due to sediment deposition. Upper Middle River had a poor rating for this metric, indicating gravel, cobble and boulder in the riffle area is more than 75% surrounded by fine sediment at 1BMDL066.05.

RIPVEG (Riparian Vegetative Zone Width) – Is a measure of the width of the natural riparian zone. A healthy riparian zone acts as a buffer for pollutants in runoff from the land, helps prevent erosion, and provides habitat. Upper Middle River scored poorly on this metric as well, meaning that the riparian zone width was less than 20 feet at 1BMDL066.05.

SEDIMENT (Sediment Deposition) – A metric that measures the amount of sediment deposition in the pool areas of the stream. Upper Middle River had a marginal score for this metric at 1BMDL066.05. This indicates that 30 - 50% of the pool bottom is affected by sediment.

SUBSTRATE (Epifaunal Substrate/Available Cover) – Provides a measure of the relative quantity and quality of available habitat in the stream for benthic macroinvertebrates. Upper Middle River had a marginal score indicating that only 20 - 40% of a stable mix of suitable habitat exists at 1BMDL066.05. Scores this low are often indicative of substrate that is constantly disturbed or has been removed.

At Station 1BMDL066.47, the habitat metrics that compared poorly to the reference station include:

BANKS (Bank Stability) – The Upper Middle River was rated marginal for this metric at 1BMDL066.47. This means that 30-60% of the streambank has evidence of erosion.

BANKVEG (Bank Vegetative Protection) – This metric was rated as marginal for Upper Middle River at the 1BMDL066.47 monitoring station.

EMBED (Embeddedness) – Upper Middle River had a marginal rating for this metric at 1BMDL066.47. More than 50 - 75% of the gravel, cobble and boulder in the riffle area are surrounded by fine sediment.

RIPVEG (Riparian Vegetative Zone Width) – Upper Middle River scored poorly on this metric as well, meaning that the riparian zone width was less than 20 feet at 1BMDL066.47.

SEDIMENT (Sediment Deposition) – Upper Middle River had a marginal score for this metric at 1BMDL066.47. This indicates that 30 - 50% of the pool bottom is affected by sediment.

The habitat and biological metrics clearly indicate that solids deposition is a significant problem. MapTech personnel have also made site visits to the Upper Middle River area and report that there is very little riparian vegetation and that the streambanks are eroded. Furthermore, the monitoring station sites are characterized by pasture, and livestock have full access to the stream.

7.1.3.2 Habitat Conditions in Christians Creek

Results from the habitat assessments are displayed in Figure 7.5. Habitat assessments have been carried out in Christians Creek at 1BCST007.42 (Route 795 bridge) since October 1994 (10 surveys). Several reference sites have been used, but the one used most frequently was the Cowpasture River (Station 2CWP050.66) located in Bath County. Total habitat scores were very good, ranging from 116 - 171 (Average = 141). In general, the trend shows improvement in habitat scores throughout the 1990s. The stream channel in Christians Creek was in good physical condition with little alteration of the channel, had good flow, and had adequate riffles and velocity. The only metric that was consistently impaired was riparian vegetation.

1BCST007.42 scored marginally on this metric, meaning that the riparian zone width was 20 - 40 feet.

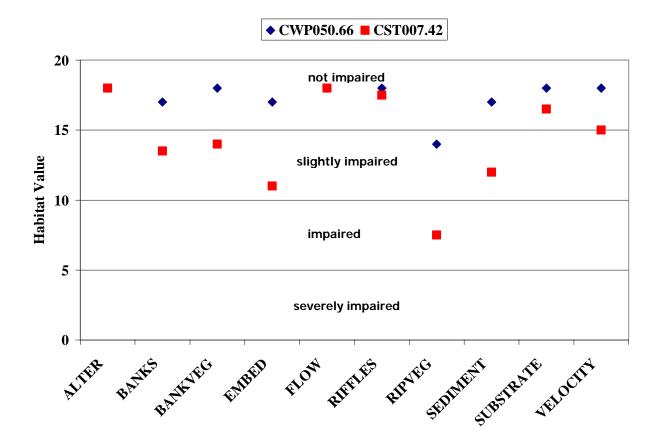


Figure 7.5 Average results from the habitat assessment for Christians Creek.

The only other metrics that indicated problems in Christians Creek were bank stability and bank vegetative protection. The low scores for these metrics were primarily in the early 1990s and they improved considerably over the sampling period. Average scores for embeddedness and sediment deposition were 12 and 13, respectively. Only embeddedness fell below the impaired cutoff score of 10 on one occasion (9 in November, 2002). Therefore, sediment deposition may be a minor stressor at this monitoring station. However, the biological metrics indicate that the impact of sediment deposition is minimal. One of the MAIS metrics, % Haptobenthos, is a good indicator of sediment problems at times because sediment eliminates habitat for clingers and

crawlers, which require a coarse, clean bottom. The average score for Christians Creek was 72, which compared very favorably to the Cowpasture River reference station 78.

7.1.3.3 Habitat Conditions in Moffett Creek

Results from the habitat assessments for Moffett Creek are displayed in Figure 7.6. Habitat assessments were carried out in Moffett Creek at two stations, 1BMFT006.24 and 1BMFT005.11 since the fall of 1994. The original monitoring station, 1BMFT006.24, was abandoned in the spring of 1999 due to access issues. A new station site was located just over one mile downstream, 1BMFT005.11. The sampling for this assessment includes six surveys at station 1BMFT006.24 and three at station 1BMFT005.11. The results for each station will be discussed separately. The reference site for both stations was Strait Creek (Station 1ASTC004.27) in Highland County. At both stations, the stream channel was in good physical condition with little alteration of the channel, good flow, and with adequate riffles. Velocity scores were often marginal at station 1BMFT005.11 but good at 1BMFT006.24. Both stations had an average total habitat score of 109 (<120 is considered poor) but there were minor differences between them. At Station 1BMFT006.24, the following habitat metrics compared poorly to the reference station:

BANKS (Bank Stability) – Moffett Creek at monitoring station 1BMFT006.24 was rated marginal for this metric. This means that 30 - 60% of the streambank has evidence of erosion. Erosion is an important source of sediment deposition in the stream.

BANKVEG (Bank Vegetative Protection) –This metric was rated as marginal for Moffett Creek at the 1BMFT006.24 monitoring station, indicating that only 50 - 70% of the streambank is protected by vegetation.

RIPVEG (Riparian Vegetative Zone Width) – Moffett Creek at 1BMFT006.24 had a marginal average score on this metric as well, meaning that the riparian zone width was only 20 - 40 feet.

SEDIMENT (Sediment Deposition) – Moffett Creek at 1BMFT006.24 had a marginal average score for this metric. This indicates that 30 - 50% of the pool bottom is affected by sediment.

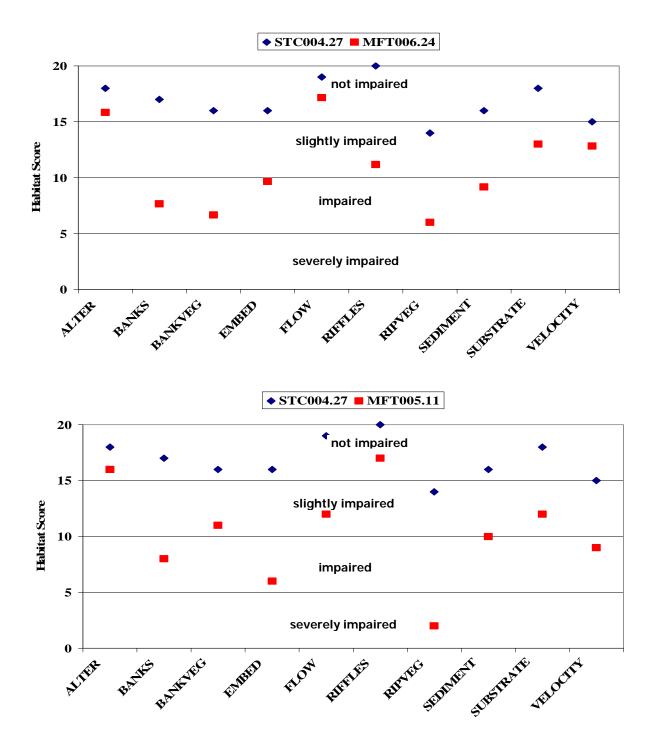


Figure 7.6 Results from the habitat assessment for Moffett Creek.

At Station 1BMFT005.11, the following habitat metrics compared poorly to the reference

station:

BANKS (Bank Stability) – Moffett Creek at monitoring station 1BMFT005.11 was rated marginal for this metric. This means that 30 - 60% of the streambank has evidence of erosion. Erosion is an important source of sediment deposition in the stream.

RIPVEG (Riparian Vegetative Zone Width) – Moffett Creek at 1BMFT005.11had a poor average score for this metric as well, meaning that the riparian zone width was less than 20.

EMBED (Embeddedness) – Moffett Creek at 1BMFT005.11had a marginal average rating for this metric, indicating that gravel, cobble and boulder in the riffle area is more than 75% surrounded by fine sediment.

VELOCITY (Velocity/Depth Combinations) – Patterns of velocity and depth are crucial to high-gradient streams. There are four distinct patterns: (1) slow-deep, (2) slow-shallow, (3) fast-deep, (4) fast-shallow. Moffett Creek at 1BMFT005.11 had a marginal average score for this metric, which indicates that only two of the four flow regimes was present.

In addition, the sediment average score at 1BMFT005.11 was 10, which is the cutoff value between slightly impaired and impaired conditions. Even though there were some slight differences, the habitat metrics with average scores below 10 indicate that sediment is a significant problem in Moffett Creek. Eroding streambanks, sediment deposition in pool areas, and embeddedness are all indicators of excessive siltation. The benthic metrics also indicate that sediment is contributing to the impairments. MFBI is often an indicator of fine organic solids. Moffett Creek at station 1BMFT006.24 had an average score of 5.64 (>5.56 is considered poor) and a maximum score of 9.97 in October 1998. Moffett Creek at station 1BMFT005.11 had an average score of 5.27 and a maximum value of 6.36 in March 2003. This indicates that Moffett Creek has consistently high levels of fine organic particulate matter and, periodically, there are extreme amounts.

7.1.4 Landuse

Landuses along the first-order stream corridors in the Upper Middle River watershed, the Christians Creek watershed, and the Moffett Creek watershed are shown in Figure 7.7 through Figure 7.9, respectively. Landuse in the corridors of first order streams has been analyzed because vegetative cover provides a combination of factors (*e.g.*, shading, deadfall, and a primary energy source for the aquatic community) that promote a healthy aquatic community. Of these factors, litterfall is the primary energy source for the aquatic communities found in freshwater streams and litterfall occurs primarily in the first order streams of a drainage system. Among those watersheds considered as potential reference watersheds for benthic impairments in the Middle River Watershed, forest cover in the first order stream corridors ranged from 38%-87% of the total area. Based on a statistical analysis of the amount of forest cover on first order streams in impaired and non-impaired streams, the criterion for the minimal forest cover needed to support a diverse benthic community was set at 33%. First order stream corridors in the Upper Middle River and Christians Creek drainage are 23% and 18% forested, respectively, and lack of litter input is probably a stressor to the aquatic community in the Upper Middle River and Christians Creek.

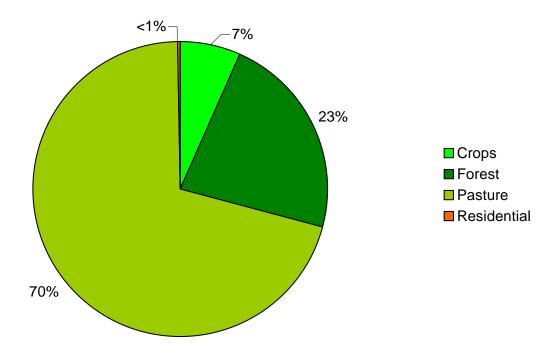


Figure 7.7 Landuse in the first order stream corridors of Upper Middle River.

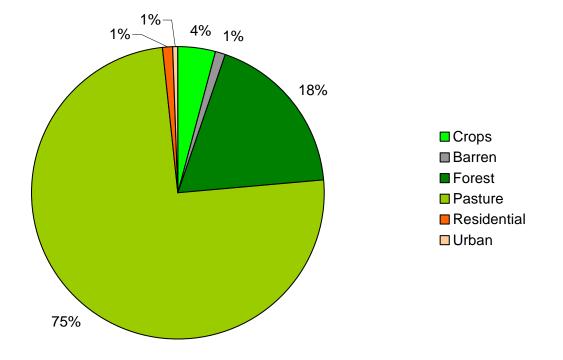


Figure 7.8 Landuse in the first order stream corridors of Christians Creek.

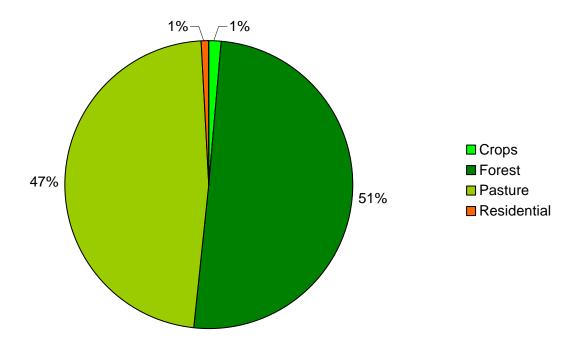


Figure 7.9 Landuse in the first order stream corridors of Moffett Creek.

7.1.5 Stressor Identification Summary

7.1.5.1 Upper Middle River

Three stressors on the aquatic life in the upper Middle River have been identified, two probable and one potential.

Probable stressors:

- 1) Excessive siltation leading to sedimentation, embeddedness, and loss of habitat.
- 2) Lack of litterfall to the first order streams in the upper Middle River watershed that results from a lack of forest cover in the riparian corridors.

Potential stressor:

3) Elevated nutrient levels.

The two probable stressors are interrelated and impacted by landuse in and around the riparian corridor of the Upper Middle River. The third stressor, thought to be less important, is nutrient inputs. The diurnal swings do not drive DO below the standard, but the swing is pronounced, and both total phosphorus and nitrate concentrations are found at elevated levels. It is anticipated that the TMDL for sediment will have beneficial impacts on the nutrient loads to the stream as well.

Sediment loads were considered the primary stressor for the Upper Middle River TMDL development. Sediment loads were modeled and an instream endpoint was established based on a reference watershed approach. In addition, implementation efforts should target first order stream corridors for riparian vegetation.

7.1.5.2 Christians Creek

The probable stressors on the aquatic life in Christians Creek have been identified as:

- 1) lack of litter fall to the first order streams in Christians Creek watershed that results from a lack of forest cover in the riparian corridors, and
- 2) sedimentation from riparian corridor and bank erosion (minor stressor).

The primary stressor on the aquatic life of Christians Creek was identified as lack of litter fall to the first order streams in the Christians Creek watershed from a lack of forest cover in the riparian corridors. A second minor stressor on the aquatic life in Christians Creek was identified as sedimentation from stream bank erosion. These two stressors are inexorably linked. A lack of riparian tree cover means that banks are likely unstable and susceptible to erosion because tree roots are not holding and maintaining bank soils. Based on input from VADEQ and EPA, a TMDL for sediment inputs from the riparian corridor of first order streams was developed to address these stressors. Sediment loads delivered from areas in the first-order stream corridor, including the stream channel, were modeled and an instream input was established on a reference watershed approach. Implementing best management practices that establish riparian tree cover will increase leaf fall and decrease bank erosion and sedimentation.

One matter of concern in Christians Creek is the presence of toxic organics (chlordane and PCBs) that have been found in sediments from the stream. However, there is insufficient data to confirm that these pollutants are currently impacting the aquatic community.

7.1.5.3 Moffett Creek

The stressor on the aquatic life in Moffett Creek has been identified as

1) Excessive siltation leading to sedimentation, embeddedness, and loss of habitat.

Sediment loads were considered the primary stressor for the Moffett Creek TMDL development. Sediment loads were modeled and an instream endpoint was established based on a reference watershed approach.

7.2 Reference Watershed Selection

A reference watershed approach was used to estimate the necessary load reductions that are needed to restore a healthy aquatic community and allow the streams in the Middle River watershed to achieve their designated uses. The reference watershed approach is based on selecting a non-impaired watershed in the same eco-region as the impaired watershed that has similar landuse, soils, and stream characteristics. The modeling process uses load rates in the non-impaired watershed as a target for load reductions in the impaired watershed. The impaired watershed is modeled to determine the current load rates and determine what reductions are necessary to meet the load rates of the non-impaired watershed.

Fourteen potential reference watersheds were initially selected based on non-impairment status, stream order, and eco-region (Figure 7.10). From the fourteen selected watersheds, individual reference watersheds were selected for Upper Middle River, Christians Creek, and Moffett Creek watersheds based on comparative watershed size, landuse, and slope. The General Standard TMDL for Lewis Creek will be addressed in a separate report in order to consider the Superfund site within the Lewis Creek watershed.

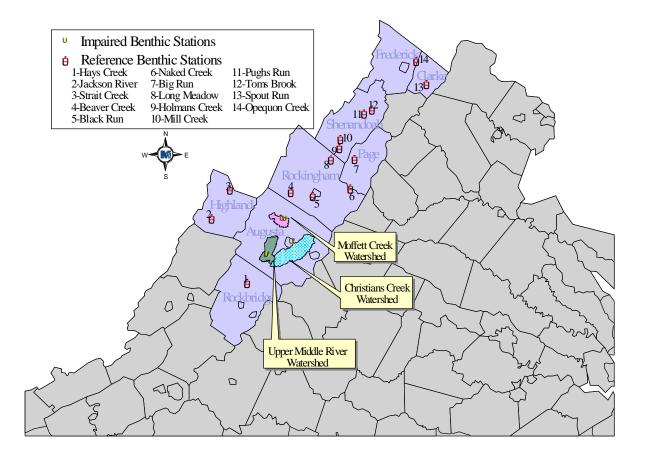
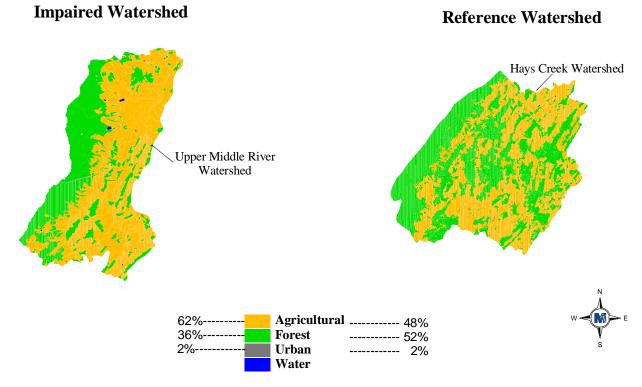


Figure 7.10 Potential reference watersheds.


Table 7.11

7.2.1 Upper Middle River

Hays Creek watershed in Rockbridge County was selected as the reference watershed for Upper Middle River. Table 7.11 and Figure 7.11 show the comparison of the landuse in the impaired watershed and the reference watershed. Figure 7.12 shows the location of the impaired watershed and the reference watershed within the Central Appalachian Ridges and Valleys ecoregion. Figure 7.13 shows the comparison of the slopes in the impaired watershed and the reference watershed.

Upper Middle River and Hays Creek watershed landuse comparison.

Landuse	Upper Middle River	Hays Creek
Barren	<1%	<1%
Forest	36%	52%
Crops	6%	2%
Pasture	56%	46%
Residential/Urban	<1%	<1%
Total Acreage	30,423	50,933

Figure 7.11 Upper Middle River and Hays Creek watershed landuse comparison.

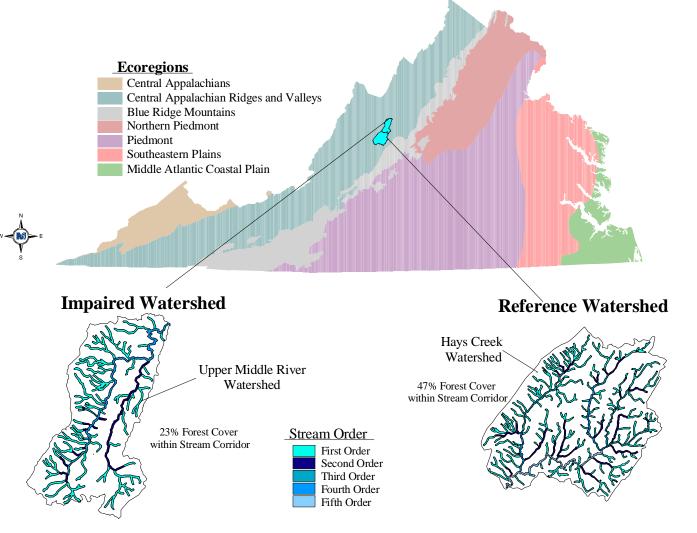


Figure 7.12 Location of Upper Middle River and Hays Creek watersheds.

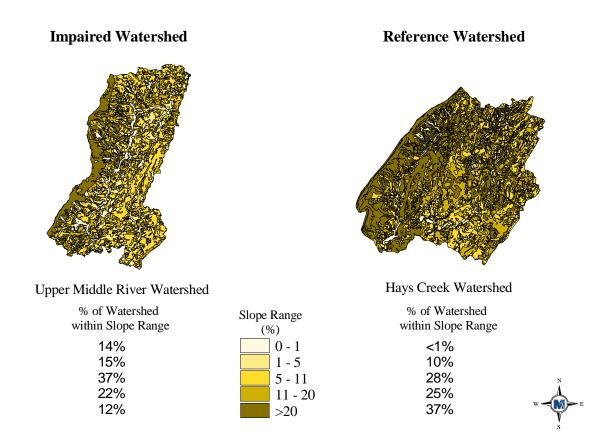


Figure 7.13 Upper Middle River and Hays Creek watershed slope comparison.

7.2.2 Christians Creek

The upper Opequon Creek watershed in Frederick County was selected as the reference watershed for Christians Creek. Table 7.12 and Figure 7.14 show the comparison of the landuse in the impaired watershed and the reference watershed. Figure 7.15 shows the location of the impaired watershed and the reference watershed within the Central Appalachian Ridges and Valleys eco-region. Figure 7.16 shows the comparison of the slopes in the impaired watershed.

Landuse	Christians Creek	Opequon Creek
Barren	1%	1%
Forest	26%	33%
Crops	8%	5%
Pasture	56%	51%
Residential/Urban	9%	10%
Total Acreage	68,844	62,192

 Table 7.12
 Christians Creek and Opequon Creek watershed landuse comparison.

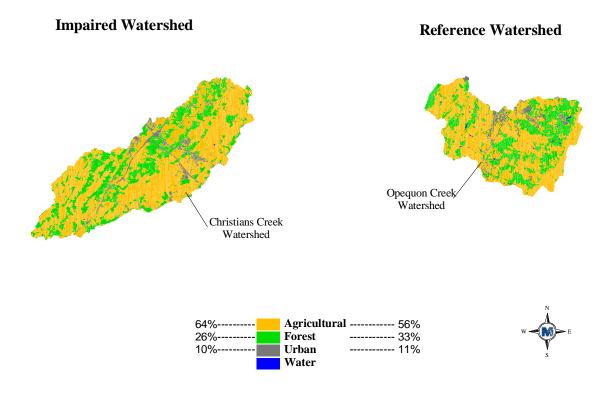
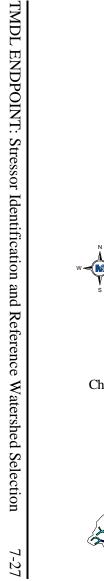



Figure 7.14 Christians Creek and Opequon Creek watershed landuse comparison.

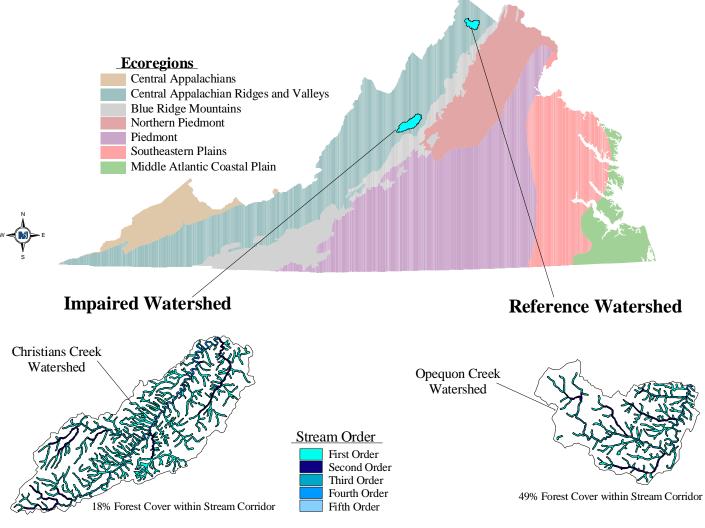


Figure 7.15 Location of Christians Creek and Opequon Creek watershed.

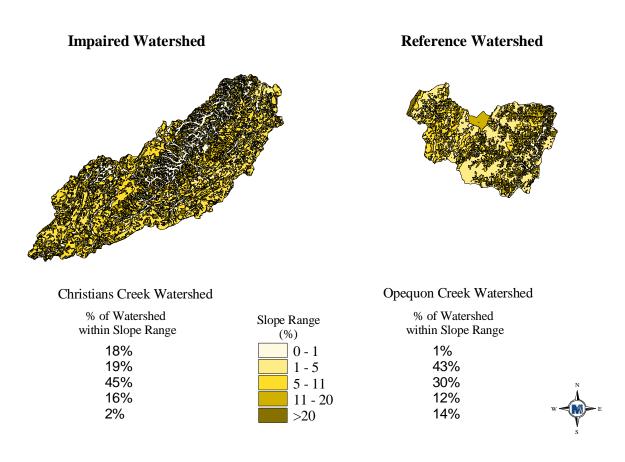


Figure 7.16 Christians Creek and Opequon Creek watershed slope comparison.

7.2.3 Moffett Creek

Mill Creek watershed in Shenandoah County was selected as the reference watershed for Moffett Creek. Table 7.13 and Figure 7.17 show the comparison of the landuse in the impaired watershed and the reference watershed. Figure 7.18 shows the location of the impaired watershed and the reference watershed within the Central Appalachian Ridges and Valleys ecoregion. Figure 7.19 shows the comparison of the slopes in the impaired watershed and the reference watershed.

 Table 7.13
 Moffett Creek and Mill Creek watershed landuse comparison.

Landuse	Moffett Creek	Mill Creek
Barren	0%	0%
Forest	50%	59%
Crops	5%	2%
Pasture	44%	38%
Residential/Urban	1%	1%
Total Acreage	16,996	25,452

Impaired Watershed

Reference Watershed

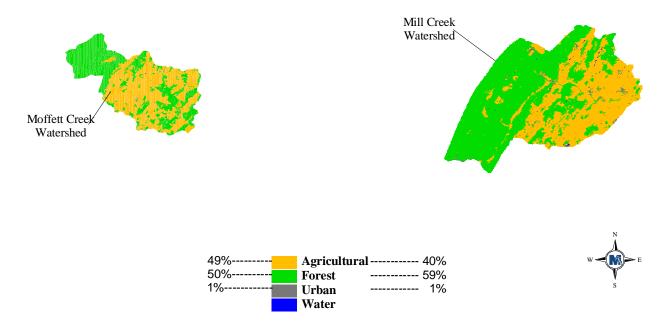


Figure 7.17 Moffett Creek and Mill Creek watershed landuse comparison.

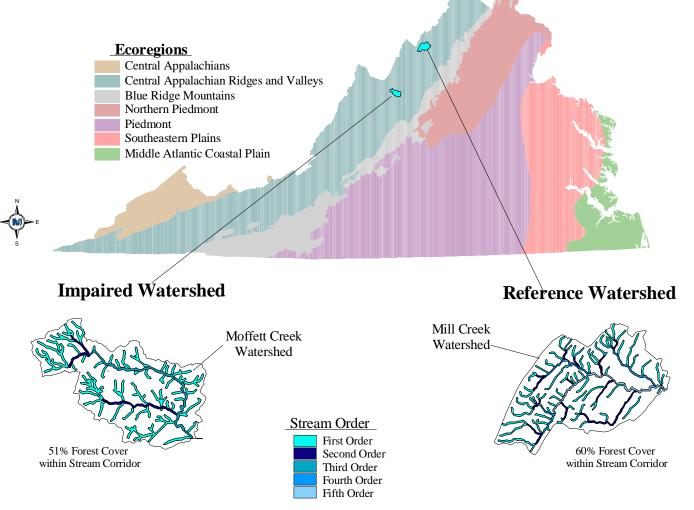


Figure 7.18 Location of Moffett Creek and Mill Creek watersheds.

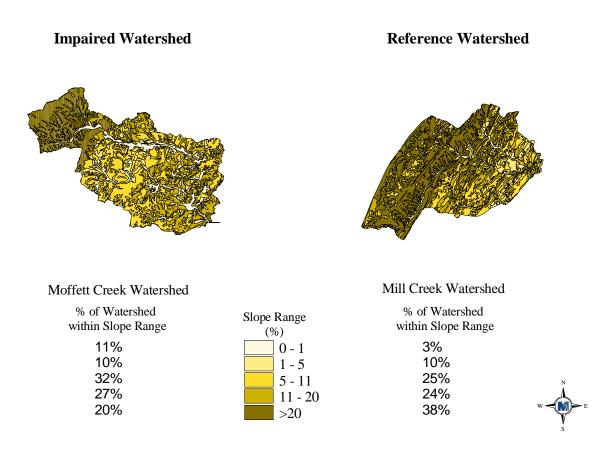


Figure 7.19 Moffett Creek and Mill Creek watershed slope comparison.

8. MODELING PROCEDURE

A reference watershed approach was used in this study to develop benthic TMDLs for sediment for Christians Creek, Moffett Creek and the Upper Middle River watersheds. As noted in Section 7.0, sediment was identified as the primary stressor for watersheds Moffett Creek and Upper Middle River watersheds. The analysis also strongly suggested that Christians Creek was not impaired and only limitedly impacted by sediment. A watershed model was used to simulate sediment loads from potential sources in both the impaired and reference watersheds. The model used in this study was the *Visual BasicTM* version of the Generalized Watershed Loading Functions (GWLF) model with modifications for use with ArcView (Evans et al., 2001). The model also included modifications made by Yagow et al., 2002 and BSE, 2003. Numeric endpoints were based on unit-area loading rates calculated for respective reference watersheds. The TMDLs were then developed for the impaired watersheds based on these endpoints and the results from load allocation scenarios.

8.1 Model Framework Selection

The GWLF model was developed at Cornell University (Haith and Shoemaker, 1987; Haith, et al., 1992) for use in ungaged watersheds. It was chosen for this study as the model framework for simulating sediment. GWLF is a continuous simulation spatially lumped model. It operates on a daily time step for water balance calculations and monthly calculations for sediment and nutrients from a daily water balance. In addition to runoff and sediment, the model simulates dissolved and attached nitrogen and phosphorus loads delivered to streams from watersheds with both point and nonpoint sources of pollution. The model considers flow input from both surface and groundwater. Landuse classes are used as the basic unit for representing variable source areas. The calculation of nutrient loads from septic systems, stream-bank erosion from livestock access, and the inclusion of sediment and nutrient loads from point sources are also supported. Runoff is simulated based on the Soil Conservation Service's Curve Number method (SCS, 1986). Erosion is calculated from a modification of the Universal Soil Loss Equation (Schwab et al., 1983; Wischmeier and Smith, 1978). Sediment

estimates use a delivery ratio based on a function of watershed area and erosion estimates from the modified USLE. The sediment transported depends on the transport capacity of runoff.

For execution, GWLF uses three input files for weather, transport, and nutrient loads. The weather file contains daily temperature and precipitation for the period of record. Data are based on a water year typically starting in April and ending in September. The transport file contains input data related to hydrology and sediment transport. The nutrient file contains primarily nutrient values for the various landuses, point sources, and septic system types, but does include urban sediment buildup rates.

8.2 Model Setup

Watershed data needed to run GWLF used in this study were generated using GIS spatial coverage, local weather data, streamflow data, literature values, and other data. Watershed boundaries for the three impaired stream segments and selected reference watersheds were delineated from USGS 7.5 minute digital topographic maps using GIS techniques. The impaired watersheds were delineated from the downstream extent of the respective segment impairments.

8.3 Source Assessment

Three source areas were identified as the primary contributors to sediment loading in the impaired watersheds that are the focus of this study – Surface runoff, Point sources, and Streambank erosion. The sediment process is a continual process but is often accelerated by human activity. An objective of the TMDL process is to minimize the acceleration of the sediment process. This section describes predominant sediment source areas, model parameters, and input data needed to simulate sediment loads.

8.3.1 Channel and Streambank Erosion

An increase in impervious land without appropriate stormwater control, increases runoff volume and peaks and leads to greater channel erosion potential. It has been well documented that livestock with access to streams can significantly alter the physical

dimensions of streams through trampling and shearing (Armour, et al., 1991; Clary and Webster, 1990; Kaufman and Kruger, 1984). Increasing the bank full width decreases stream depth, increases sediment, and adversely affects aquatic habitat (USDI, 1998). All of the watersheds have significant livestock production.

8.3.2 Point Sources for TSS Loads

Fine sediments are included in total suspended solids (TSS) loads that are permitted for various facilities with industrial and construction VPDES permits. Sediment loads from industrial and construction permitted sites are included in the waste load allocation (WLA) component of the TMDL, in compliance with 40 CFR §130.2(h).

8.4 Source Representation – Input Requirements

As described in Section 8.1, the GWLF model was developed to simulate runoff, sediment and nutrients in ungaged watersheds based on landscape conditions such as landuse/land cover, topography, and soils. In essence, the model uses a form of the hydrologic units (HU) concept (Li, 1972; England, 1970) to estimate runoff and sediment from different pervious areas (HUs) in the watershed. In the GWLF model, the nonpoint source load calculation for sediment is affected by landuse activity (e.g., farming practices, topographic parameters, soil characteristics, soil cover conditions, stream channel conditions, livestock access, and weather). The model uses landuse categories as the mechanism for defining homogeneity of source areas. This is a variation of the HU concept, where homogeneity in hydrologic response or nonpoint source pollutant response would typically involve the identification of soil landuse topographic conditions that would be expected to give a homogeneous response to a given rainfall input. A number of parameters are included in the model to index the affect of varying soiltopographic conditions by landuse entities. A description of model parameters is given in Section 8.4.1 followed by a description of how parameters and other data were calculated and/or assembled.

8.4.1 Description of Model Input Parameters

The following description of GWLF model input parameters was taken from a TMDL Draft report prepared by BSE, 2003:

Hydrologic Parameters

Watershed Related Parameter Descriptions

- <u>Unsaturated Soil Moisture Capacity (SMC)</u>: The amount of moisture in the root zone, evaluated as a function of the area-weighted soil type attribute available water capacity.
- <u>Recession Coefficient (/day):</u> The recession coefficient is a measure of the rate at which streamflow recedes following the cessation of a storm, and is approximated by averaging the ratios of streamflow on any given day to that on the following day during a wide range of weather conditions, all during the recession limb of each storm's hydrograph.
- <u>Seepage Coefficient (/day)</u>: The seepage coefficient represents the amount of flow lost to deep seepage.

Running the model for a 3-month period prior to the chosen period during which loads were calculated initialized the following parameters.

- <u>Initial unsaturated storage (cm):</u> Initial depth of water stored in the unsaturated (surface) zone.
- <u>Initial saturated storage (cm)</u>: Initial depth of water stored in the saturated zone.
- <u>Initial snow (cm)</u>: Initial amount of snow on the ground at the beginning of the simulation.
- <u>Antecedent Rainfall for each of 5 previous days (cm)</u>: The amount of rainfall on each of the five days preceding the first day in weather files.

Month Related Parameter Descriptions

• <u>Month</u>: Months were ordered, starting with April and ending with March – in keeping with the design of the GWLF model and its assumption that stored sediment is flushed from the system at the end of each Apr-Mar cycle. Model output was modified in order to summarize loads on a calendar year basis.

- <u>ET CV:</u> Composite evap-transpiration cover coefficient, calculated as an area-weighted average from landuses within each watershed.
- <u>*Hours per Day:*</u> mean number of daylight hours.
- <u>Erosion Coefficient:</u> This a regional coefficient used in Richard's equation for calculating daily erosivity. Each region is assigned separate coefficients for the months October-March, and for April-September.

Sediment Parameters

Watershed-Related Parameter Descriptions

• <u>Sediment Delivery ratio</u>: The fraction of erosion – detached sediment – that is transported or delivered to the edge of the stream, calculated as the inverse function of watershed size (Evans et al., 2001).

Landuse-Related Parameter Descriptions

- <u>USLE K-factor:</u> The soil erodibility factor was calculated as an area weighted average of all component soil types.
- <u>USLE LS-factor:</u> This factor is calculated from slope and slope length.
- <u>USLE C-factor:</u> The vegetative cover factor for each landuse was evaluated following GWLF manual guidance and Wischmeier and Smith (1978).
- <u>Daily sediment build-up rate on impervious surfaces</u>: The daily amount of dry deposition deposited from the air on impervious surfaces on days without rainfall, assigned using GWLF manual guidance.

Streambank Erosion Parameter Descriptions (Evans, 2002)

- <u>% Developed Land:</u> Percentage of the watershed with urbanrelated landuses- defined as all land in MDR, HDR, and COM land-uses, as well as the impervious portions of LDR.
- <u>Animal density</u>: Calculated as the number of beef and dairy 1000-lb equivalent animal units (AU) divided by watershed area in acres.

- <u>Stream length:</u> Calculated as the total stream length of natural stream channel, in meters. Excludes the non-erosive hardened and piped sections of the stream.
- <u>Stream length with livestock access:</u> calculated as the total stream length in the watershed where livestock have unrestricted access to streams, resulting in streambank trampling in meters.

8.4.2 Streamflow and Weather data

Daily streamflow data obtained from USGS gauging stations were used to calibrate hydrologic parameters in the GWLF model are given in Table 8.1. Precipitation and temperature data were obtained from a web site created by BSE, 2002 to facilitate the use of the GWLF model (Table 8.2). Rainfall from a group of nearby stations was Theissen weighted to provide a single record. Access to the database is through the Virginia Hydrologic Units code.

Watersheds	USGS station	USGS gage location	Data Period
	site number		
Christians Creek	01624800	Christians Creek near Fishersville, VA	4/1/1992-9/30/1997
Mills Creek	01632900	Smith Creek near New Market, VA	4/1/1992-9/30/1997
Hays Creek	02022500	Kerrs Creek near Lexington, VA	4/1/1992-9/30/1997
Opequon Creek	01615000	Opequon Creek near Berryville, VA	4/1/1992-9/30/1997

Table 8.1USGS gaging stations used in GWLF models.

1 able 8.2	weather station used in GWLF	models.	
Watersheds	Weather Stations (station_id, location, Thiessen weights)	Data Type	Data Period
Opequon Creek	Station id: 449186 Location: Winchester 7 SE Thiessen weight: 0.3322; Station id: 449181 Location: Winchester Winc Thiessen weight: 0.6604; Station id: 440670 Location: Berryville Thiessen weights: 0.0074	Daily Precipitation & Temperature	4/1/1992–9/30/1997
Hays Creek	Station id: 445685, Location: Montebello,1 SE Thiessen weight: 0.0327; Station id: 444876, Location: Lexington Thiessen weight: 0.3515; Station id: 443470: Location: Goshen Thiessen weight: 0.1811; Station id: 442064: Location: Craigsville 2 S; Thiessen weight: 0.0108 Station id: 443470 Location: Kerrs Creek 6 WNW Thiessen weight: 0.424	Daily Precipitation & Temperature	4/1/1992–9/30/1997
Mill Creek	Station id: 449263 Location: Woodstock 2, NE; Thiessen weight: 0.1763 Station id: 448448: Location: Timberville 3 E. Thiessen weight: 0.8209	Daily Precipitation & Temperature	4/1/1992–9/30/1997
Moffett Creek	Station id: 448975 Location: West Augusta Thiessen weight: 0.4019 Station id: 448062 Location: Staunton sewage plant Thiessen weight: 0.5981	Daily Precipitation & Temperature	4/1/1992–9/30/1997

Table 8.2Weather station used in GWLF models.

8.4.3 Landuse/landcover classes

Landuse classes were used as the basic response unit for performing runoff and erosion calculations and summarizing sediment transport. Landuse coverage was obtained from VADCR and Multi-Resolution Land Characteristics (MRLC) data (EPA, 1992).

Although both VADCR and MRLC landuse coverage were available for the impaired watersheds only MRLC data was available for the reference watersheds. To be consistent, MRLC data was used for both the impaired and reference watersheds. The landuse categories were consolidated from VADCR and/or MRLC classifications as given in Table 8.3. Urban landuse categories (*i.e.*, low density residential, middle density residential, high density residential, and commercial/industrial/transportation) were further subdivided into a pervious and an impervious component. The percentage of impervious and pervious area for urban categories was assigned from data provided in VADCR's online 2002 NPS Assessment Database (VADCR, 2002).

TMDL Landuse Categories	MRLC Landuse Categories	VADCR Landuse Categories
Low Density Residential	Low Density Residential (21)	Low Density Residential (111) Wooded Residential (118)
Medium Density Residential		Medium Density Residential (112) Mobile Home Park (115) Farmstead (241) Waste Storage Pit (242)
High Density Residential	High Density Residential (22)	High Density Residential (113)
Commercial	Commercial (23) Industrial (23) Transportation (23)	Commercial & Services (12) Industrial (13) Transportation (14)
Transitional	Barren - transitional (33) Barren/Bare Rock (31) Barren Gravel Pits (32)	Barren (7) Harvested Forest (44) Confined feeding Op. (231) Mixed Urban/Transitional (16)
Forest	Deciduous Forest (41) Evergreen Forest (42) Upland - Mixed Forest (43) Woody Wetlands (91) Shrubland (51)	Forest (4)
Urban Grass	Urban Grass (85)	Open Urban (18)
Pasture - Overgrazed	Pasture/Hay (81)	Overgrazed Pasture (2,123)
Pasture - Unimproved	Pasture/Hay (81)	Unimproved Pasture (2122)
Pasture - Improved	Grasslands (71) Pasture/Hay (81) Herbaceous Wetlands(92) Orchards/vineyards (61)	Improved Pasture (2121) Ornamentals/orchards/nurseries (22)
Cropland	Row Crops (82) Small grain (83) Cultivated Fallow (84)	Cropland (211)
Water	Water (5)	Water (11)

Table 8.3Landuse-Categories for TMDL Analysis.

The pasture/hay category was subdivided into three sub-categories (*i.e.*, overgrazed pasture, unimproved pasture, and improved pasture). The percentage of the pasture/hay acreage that was assigned to each category was obtained from local sources. Cropland was also sub-divided into two sub-categories (*i.e.*, low tillage and high tillage). The percentage assigned to each cropland sub-category was obtained from VADCR's online

database (VADCR, 2002) and local information. Landuse distributions for impaired and reference watersheds are given in Table 8.4. Landuse acreage for reference watersheds are adjusted up or down by the ratio of impaired watershed to reference watershed maintaining the original landuse distribution.

The weighted C-factor for each landuse category was estimated following guidelines given in Wischmeier and Smith, 1978, GWLF User's Manual (Haith et al., 1992), and Kleene, 1995. Where multiple landuse classifications were included in the final TMDL classification (*e.g.*, pasture/hay), each classification was assigned a C-factor and an area weighted C-factor calculated.

Landuse Category	Christians Creek (ha)	Opequon Creek (Adjusted) (ha)	Moffett Creek (ha)	Mills Creek (Adjusted) (ha)	Upper Middle River (ha)	Hays Creek (Adjusted) (ha)
Low Density Residential (pervious)	304.32	291.60	10.36	23.73	20.55	10.91
Medium Density Residential (pervious)	0.00	0.00	0.00	0.00	0.00	0.00
High density Residential (pervious)	1.98	25.10	0.00	0.00	0.00	0.77
Commercial (pervious)	271.31	82.47	0.35	0.40	0.00	0.00
Transitional	113.71	198.93	0.44	12.86	28.46	8.00
Forest	8,294.38	4,599.58	3,253.09	4,090.65	4,592.51	6,368.16
Urban Grass	0.00	35.31	0.00	0.00	0.00	0.00
Overgrazed Pasture	80.84	36.86	502.71	520.07	1,065.74	0.00
Unimproved Pasture	1,889.02	861.18	1,173.00	780.11	2,486.73	1,427.29
Improved Pasture	14,736.79	6,718.32	1,675.72	1300.18	3,552.48	4,281.88
High Tillage	294.04	345.37	50.83	75.12	111.04	36.80
Low Tillage	1,147.33	264.83	202.06	44.88	433.29	157.90
Low Density Residential (impervious)	343.17	171.26	2.75	22.80	5.46	4.24
Medium Density Residential (impervious)	0.00	0.00	0.00	0.00	0.00	0.00
High density Residential (impervious)	2.23	14.74	0.00	0.00	0.00	0.30
Commercial (impervious)	305.95	48.43	0.09	.38	0.00	0.00
Water	50.89	40.78	6.78	12.14	20.78	8.09

 Table 8.4
 Landuse distributions for impaired and reference watersheds.

8.4.4 Sediment Parameters

Sediment parameters include USLE parameters K, LS, C, and P, sediment delivery ratio, and buildup and loss functions for impervious surfaces. The product of USLE parameters, KLSCP, is entered as input to GWLF. The K factor relates to a soil's inherent erodibility and affects the amount of soil erosion from a given field. Soils data for Christians Creek, Moffett Creek, and the Upper Middle River was obtained from the Soil Survey Geographic (SSURGO) database for Virginia, the Augusta County soil survey (SCS, 1977), and Shanholtz et. al., 1988. The area-weighted average K-factor by landuse category was calculated using GIS procedures. Land slope was obtained from soil data as the average of the slope range given for each soil-mapping unit. For example a range of 2-7 percent would be 4.5. Earlier studies in the VirGIS program suggest that the slope ranges in soil surveys in general provided a better approximation than slopes calculated from Digital Elevation Models (DEMs). The length of slope was obtained from VirGIS Interim Reports (Shanholtz et al., 1988). Lengths of slope values for much of Virginia were developed during the VirGIS program in cooperation with local SCS Office personnel. The area-weighted average slope and length slope by landuse category were calculated from area-weighted slope and length slope with GIS procedures. The area-weighted LS factor was calculated for each landuse category using procedures recommended by Wischmeier and Smith (1978).

Soils data for the Hays Creek reference watershed was obtained from the Soil Survey Geographic (SSURGO) database for Augusta County (SCS, 2004), the Augusta County soil survey (SCS, 1977), VirGIS database (VADCR, 1992) for Rockbridge County, and VirGIS Interim Reports (Shanholtz et al., 1988; Shanholtz et al., 1993). Soils data for the Mill Creek reference watershed were obtained from the State Soil Geographic (STATSGO) database for Shenandoah County, the SSURGO database for Rockingham County. Soils data for Opequon Creek reference watershed were obtained from the VirGIS database (VADCR, 1992) and County Soil Surveys for Frederick (SCS, 1987) and Clarke (SCS, 1982) Counties. The area-weighted parameters, K and LS, for the reference watersheds were calculated following the procedures outlined for the impaired watersheds.

8.4.5 Pervious and Impervious Surfaces

Four TMDL categories define urban landuse/land cover (Table 8.3). Each urban area was sub-dived into pervious areas (USLE sediment algorithm applies) and impervious

areas where an exponential buildup-washoff algorithm applies based on percentage pervious and impervious calculated from data obtained from VADCR's 2002 NPS Assessment Landuse/Land cover Database (VADCR, 2002).

Daily sediment build-up rate on impervious surfaces, which represents the daily amount of dry deposition from the air on days without rainfall, was assigned using GWLF manual (Haith, et al. 1992) guidance. For this study, the values used by BSE, 2003 were assigned as the daily build up rate.

8.4.6 Sediment Delivery Ratio

The sediment delivery ratio specifies the percentage of eroded sediment delivered to surface water and is empirically based on watershed size. The sediment delivery ratios for impaired and reference watersheds were calculated as an inverse function of watershed size (Evans et al., 2001).

8.4.7 SCS Runoff Curve

The runoff curve number is a function of soil type, antecedent moisture conditions, and cover and management practices. The runoff potential of a specific soil type is indexed by the Soil Hydrologic Group (HG) code. Each soil-mapping unit is assigned HG codes that range in increasing runoff potential from A to D. The soil HG code was given a numerical value of 1 to 4 to index HG codes A to D, respectively. An area-weighted average HG code was calculated for each landuse/land cover from soil survey data using GIS techniques. Runoff curve numbers (CN) for soil HG codes A to D were assigned to each landuse/land cover condition for antecedent moisture condition II following GWLF guidance documents and SCS, 1986 recommended procedures. The runoff CN for each landuse/land cover condition then were adjusted based on the numerical area-weighted soil HG codes.

8.4.8 Parameters for Channel and Streambank Erosion

Parameters for streambank erosion include animal density, total length of streams with livestock access, total length of natural stream channel, percent of developed land, mean

stream depth, and watershed area. The animal density was calculated by dividing the number of livestock (beef and dairy) by watershed area in acres. The number of animal units (1000 pound per animal) was obtained from Virginia Agricultural Statistics. The number of dairy and beef animals for the County in which the impairment or reference watershed was located was distributed to the watershed by the ratio of watershed area to county area. Potential livestock access was estimated with GIS techniques. An estimate of the actual length of access area impacted by livestock was estimated at 2% of the potential length. The total length of the natural stream channel was estimated with GIS techniques from USGS NHD hydrography coverage as the distance of continuous streams. The length of hardened channel was estimated as 20% of the total stream length. The mean stream depth was estimated as a function of watershed area.

8.5 Point Source TSS Loads

Permitted loads were calculated as the maximum annual modeled runoff times the area governed by the permit times a maximum TSS concentration of 100 mg/l (Table 8.5). The modeled runoff for industrial stormwater dischargers was calculated for both pervious and impervious commercial sediment source areas. The calculations involved calculating a weighted maximum runoff value for commercial areas by multiplying the maximum annual modeled runoff depth from pervious commercial times the percentage of commercial area that is pervious and adding to the maximum annual modeled runoff depth from commercial impervious commercial impervious commercial areas is multiplied times the permit area (ha) times permitted concentration (TSS/mg/L) times 0.00010001 to get permit load in T/yr. For construction permit dischargers, the modeled runoff was taken as the maximum annual runoff depth (cm) for transitional landuses.

		Max. Design	Modeled	Disturb	Т	SS
Permit ID	Name	Discharge (MGD)	Runoff (cm)	Area (ha)	(mg/L)	(T/yr)
Christians Cree	ek Impairment	<u> </u>			(118,22)	(_,j_)
VA0020427	Riverheads High School STP	0.016	-			Inactive
VA0022292	Brookwood STP	0.039	-			Inactive
VA0022306	ACSA-Staunton Plaza, STP	0.200	-			Inactive
VA0025291	Fishersville STP	2.000	-	-	36	99.483
VA0086738	Petroleum Coop-Aug. Co.	0.0288	Ν	Not Permitte	ed for TSS	5
VA0089061	Woodlawn Village Mobile Home Park	0.015	-	-	117	2.425
VA0089362	Greenville STP VA0089362/VA0090417	0.039		Inact	ive	
VA0090417	Greenville WWTP	0.250	-	-	45	15.545
VAG401896	Victory Worship Center	0.001	-	-	30	0.041
VAG401967	Amoco/Deno's Food Mart	0.001	-	-	30	0.041
VAG401969	Private Residence	0.001	-	-	30	0.041
VAG401960	Private Residence	0.001	-	-	30	0.041
VAG401959	Private Residence	0.001	-	-	30	0.041
VAG401449	Private Residence	0.001	-	-	30	0.041
VAG401443	Private Residence	0.001	-	-	30	0.041
VAG401195	Private Residence	0.001	-	-	30	0.041
VAG401082	Private Residence	0.001	-	-	30	0.041
VAG401979	Private Residence	0.001	-	-	30	0.041
VAG408038	Private Residence	0.001	-	-	30	0.041
VAR100595	Pilot Travel Center 96	-	19.4	4.047	100	0.785
VAR100580	Project #U000-132-105, C501, B602	-	19.4	4.856	Inac	ctive
VAR100583	Project #0871-007-317, M502, D686, B697	-	19.4	2.104	Inac	ctive
VAR100635	Project #0642-007-293, M502 et al	-	19.4	2.428	Inac	ctive
VAR102392	Countryside Development Co LC – Windward Point	-	19.4	31.364	100	6.085
VAR101656	Shields Construction Company	-	19.4	37.232	100	7.224
VAR101657	Teaberry Green	-	19.4	4.330	100	0.840
VAR101710	VDOT Verona – 0262 007 101 L801	-	19.4	2.772	100	0.538
VAR101719	Augusta County Commercial Center – Phase I	-	19.4	9.308	100	1.806
VAR101725	Harley Crossing	_	19.4	4.614	100	0.895
VAR101780	VDOT Verona – 0635 007 S83 N501	_	19.4	0.482	100	0.094
VAR051334	FedEx Freight East, Inc Staunton	_	65.08	2.023	60	0.790
VAR051405	Augusta Regional Landfill		19.4	42.000	100	8.148
1111001100	Total		17.1	12.000	100	145
Moffett Creek	Impairment					
VAR100622	Project #0728-007-P79, N501	-	19.4	2.428	Inac	ctive
	Total					0.0
	River Impairment					
VA0060917	Camp Shenandoah STP	0.0029	-	-	45	0.180
VA0091219	Casta Line Trout Farms	1.840				1.175*
	Total					1.36

Table 8.5VPDES point source facilities and permitted TSS load.

* This load was calculated from a mximum monthly average of 3.22 kg/day. This permitted load results from the TMDL developed for Cockran Spring.

8.6 Stream Characteristics

The GWLF model does not support flow routing. An empirical relationship developed by Evans, et al., 2001 and modified by BSE, 2003 requires total watershed stream length of the natural channel and total watershed stream length with livestock access. Total watershed stream length in meters was calculated using GIS procedures from USGS NHD hydrography coverage, excluding intermittent streams. This calculation excludes the non-erosive hardened and piped sections of the stream. The potential total stream length with livestock access was calculated with GIS procedures from the MRLC landuse and hydrography coverage. The unrestricted livestock access was estimated as 2 percent of the potential total stream length with livestock access. The mean depth of the natural channel was calculated as a function of watershed area.

8.7 Selection of a Representative Modeling Period

The selection of the modeling period was based on two factors; availability of streamflow data and the need to represent critical hydrological conditions and seasonal variability. A discussion of analysis conducted to select a representative period is given in Section 4.0.

8.8 Hydrologic Model Calibration Process

Although the GWLF model was originally developed for use in ungaged watersheds, calibration was performed to insure that hydrology was being simulated reasonably accurately. This process was considered necessary to minimize errors in sediment simulations due to potential gross errors in hydrology. The models parameters were set based on available soils, landuse, and topographic data. Parameters that were adjusted during calibration included the evapo-transpiration cover coefficient, recession coefficient, seepage coefficient, and unsaturated soil moisture capacity.

Model calibrations were performed for reference watersheds Hays Creek, Mill Creek, and Opequon Creek. One calibration was performed for the impaired watersheds and assumed to be applicable to all three. The model for Christians Creek, Moffett Creek and Upper Middle River was calibrated using the mean daily flow from USGS Station Number 01624800 for the period April 1992 through September 1997. Precipitation and

temperature data were obtained from a website maintained by the Biological Systems Engineering Department for automated creation of weather data for GWLF in the State of Virginia. The hydrologic unit code (HUP) is used to access the data (Table 8.2). The final calibration results are given in Figure 8.1 and 8.2 with goodness of fit statistics given in Table 8.6. The model for Opequon Creek was calibrated using USGS Station #01615000 for the period April 1992 through September 1997. Precipitation and temperature data stations are give in Table 8. The final calibration results are displayed in Figure 8.3 and Figure 8.4 for the calibration period with statistics showing the goodness of fit given in Table 8.6. Reference watershed Hays Creek did not have an observed stream flow station located within the watershed boundary. USGS Station #02022500 located nearby and precipitation and temperature data stations listed in Table 8.2 was used to calibrate hydrologic model parameters for Hays Creek (Figure 8.5 and Figure 8.6). The final calibration for Hays Creek is given in Figure 8.4 with statistics showing goodness of fit given in Table 8.6. Reference watershed Mill Creek also did not have a stream flow station located within the watershed boundary. USGS Station #01632900 located nearby, with precipitation and temperature data from Table 8.2, was used to calibrate the Mill Creek model. The final calibration for Hays Creek is given in Figure 8.7 and Figure 8.8 with statistics showing goodness of fit given in Table 8.6.

Model calibrations were considered good to excellent for total runoff volume. Monthly fluctuations were variable but still considered reasonably good considering the general simplicity of GWLF. Results were also consistent with other applications of GWLF in Virginia (*e.g.*, Tetra Tech, 2001 and BSE, 2003).

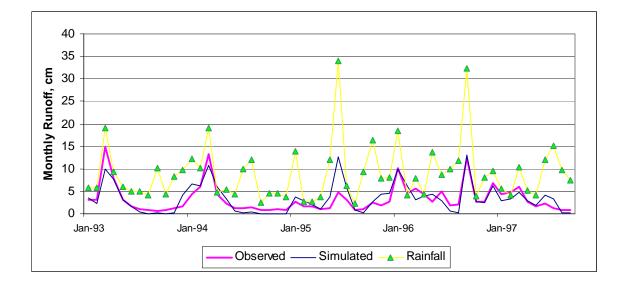


Figure 8.1 Comparison of Monthly Simulated and Observed Flow for Christians Creek Watershed.

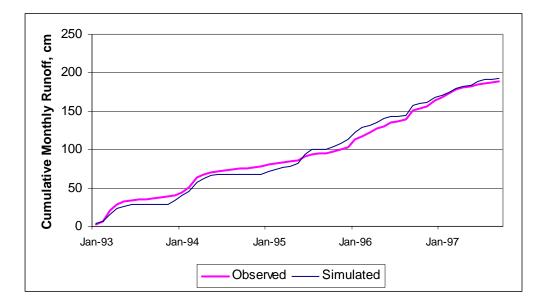


Figure 8.2 Comparison of Cumulative Monthly Simulated and Observed Flow for Christians Creek.

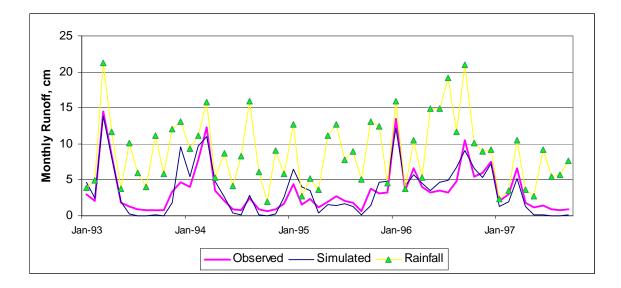
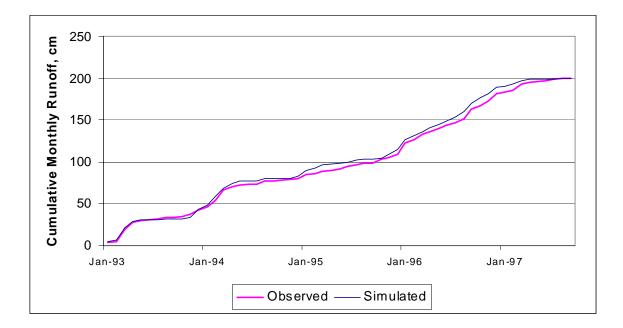



Figure 8.3 Comparison of Monthly Simulated and Observed Flow for Opequon Creek Watershed.

Figure 8.4 Comparison of Cumulative Monthly Simulated and Observed Flow for Opequon Creek.

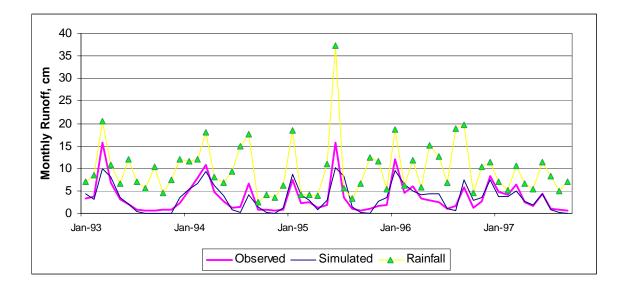


Figure 8.5 Comparison of Monthly Simulated and Observed Flow for Hays Creek Watershed.

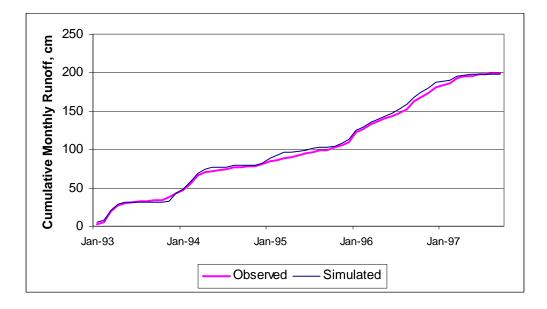


Figure 8.6 Comparison of Cumulative Monthly Simulated and Observed Flow for Hays Creek.

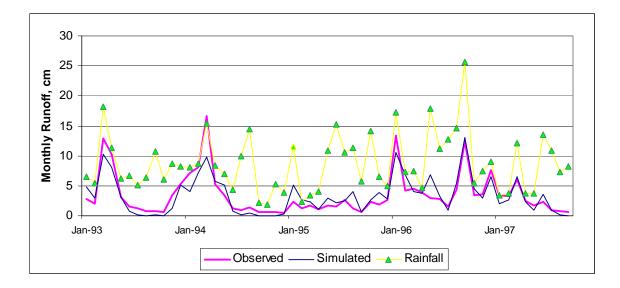
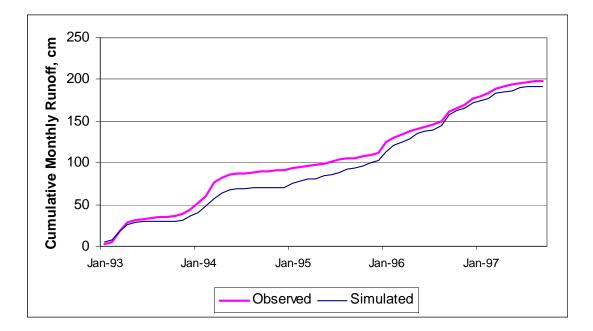



Figure 8.7 Comparison of Monthly Simulated and Observed Flow for Mill Creek Watershed.

Figure 8.8 Comparison of Cumulative Monthly Simulated and Observed Flow for Mill Creek.

Watershed	Simulation Period	R^2 (Correlation) value	Total Volume Error
Christians Creek	4/1/92 -9/30/97	0.84	2.1%
Opequon Creek	4/1/92 -9/30/97	0.93	-0.4%
Hays Creek	4/1/92 -9/30/97	0.89	-2.2%
Mill Creek	4/1/92 -9/30/97	0.89	-3.4%

Table 8.6GWLF flow calibration statistics.

8.9 Existing Conditions

A listing of parameters from the GWLF Transport input files that were finalized during hydrologic calibration for existing conditions are given in Appendix D, Tables D.1 through Table D.12. Watershed parameters are listed in Table D.1 for Moffett Creek and reference watershed Mill Creek, in Table D.5 for Upper Middle River and reference watershed Hays Creek, and in Table D.9 for Christians Creek and reference watershed Opequon Creek. Monthly evaporation cover coefficients are listed in Appendix D, Table D.2 for Moffett Creek and reference watershed Mill Creek, in Table D.6 for Upper Middle River and reference watershed Hays Creek and reference watershed Mill Creek, and in Table D.10 for Christians Creek and reference watershed Opequon Creek. Landuse parameters are listed in Appendix D, Table D.3 for Moffett Creek and reference watershed Mill Creek, in Table D.11 for Christians Creek and reference watershed Opequon Creek. Area adjustments for reference watershed Mill Creek are given in Appendix D, Table D.4, Table D.8 for reference watershed Hays Creek, and Table D.12 for reference watershed Opequon Creek.

8.9.1 Moffett Creek

The existing sediment loads were modeled for Moffett Creek and Mill Creek and adjusted for agricultural BMPs applied to both watersheds as identified in the Virginia Agricultural BMP database (Appendix D, Table D.1). The agricultural BMP database provides the type of BMP, acres benefited, sheet and rill erosion and gully erosion reduction. The total sediment reduction was calculated by multiplying the total erosion times the delivery ratio for the respective watersheds. An efficiency factor was calculated based on the existing sediment load from agricultural land. The existing

TMDL Development

sediment loads for individual agricultural categories were adjusted for BMPs (Table 8.7). The target TMDL load for Moffett Creek is the average annual load (4,067) from the area-adjusted Mill Creek watershed under existing conditions (Table 8.7).

Sediment Sources	Moffet	t Creek	Mill Creek (A	rea adjusted)
	(T/yr)	(T/ha)	(T/yr)	(T/ha)
LDR-PER	0.381	0.037	0.957	0.040
MDR-PER	0.000	0.000	0.000	0.000
HDR-PER	0.000	0.000	0.000	0.000
COM-PER	0.003	0.009	0.012	0.029
Transitional	1.174	2.668	33.773	2.625
Forest	177.686	0.055	77.181	0.019
Urban Grass	0.000	0.000	0.000	0.000
Pasture 1	3,968.402	7.894	1,754.536	3.374
Pasture 2	3,675.741	3.134	920.536	1.180
Pasture 3	741.016	0.442	251.635	0.194
High Tillage	501.434	9.865	710.389	7.439
Low Tillage	517.459	2.561	105.782	2.353
LDR-IMP	0.573	0.208	4.789	0.210
MDR-IMP	0.000	0.000	0.000	0.000
HDR-IMP	0.000	0.000	0.000	0.000
COM-IMP	0.009	0.074	0.383	0.080
Channel Erosion	5.389		786.169	
NPS Load	9,589		4,067	
Point Source Load	0.0	0.0	0.0	0.0
Watershed Totals	9,589		4,067	

Table 8.7Existing sediment loads for Moffett Creek and reference watershed
Mill Creek.

8.9.2 Upper Middle River

The existing sediment loads modeled for the Upper Middle River impairment and reference watershed Hays Creek are listed in Table 8.8. The existing sediment loads for individual agricultural categories were adjusted for BMPs following the same procedures that were used for Moffett Creek and area-adjusted Mill Creek. The target TMDL load for Upper Middle River is the average annual load (6,316) from the area-adjusted Hays Creek watershed under existing conditions (Table 8.8).

Sediment Sources	Upper Mi	ddle River	Hays Creek (Area adjusted)
	(t/yr)	(t/ha)	(t/yr)	(t/ha)
LDR-PER	0.737	0.036	0.474	0.043
HDR-PER	0.000	0.000	0.024	0.031
COM-PER	0.000	0.000	0.000	0.000
Transitional	188.777	6.634	69.177	8.644
Forest	173.249	0.038	341.300	0.054
Pasture 1	4,886.925	4.585	0.000	0.000
Pasture 2	4,554.314	1.831	4,439.110	3.110
Pasture 3	913.404	0.257	1,799.240	0.420
High Tillage	714.515	6.435	377.238	10.251
Low Tillage	724.021	1.671	407.198	2.579
LDR-IMP	1.164	0.213	0.913	0.215
MDR-IMP	0.000	0.000	0.000	0.000
HDR-IMP	0.000	0.000	0.019	0.064
COM-PER	0.000	0.000	0.000	0.000
Channel Erosion	4.648		19.345	
NPS Load	12,162		6,316	
Point Source Load	1.36		0.0	
Watershed Totals	12,163		6,316	

Table 8.8Existing sediment loads for Upper Middle River and Reference
watershed Hays Creek.

8.9.3 Christians Creek

The primary stressor on the aquatic life of Christians Creek was identified as lack of litter fall to the first order streams in the Christians Creek watershed from a lack of forest cover in the riparian corridors. A second minor stressor on the aquatic life in Christians Creek was identified as sedimentation from stream bank erosion. Corridor analyses were conducted on the Middle River impairments and potential reference watersheds. These results strongly suggest that an abundance of tree cover on first order streams was important to a healthy stream biological community. The analysis also established that a 33 to 38% forest cover is an approximate threshold between a healthy community and a community showing signs of stress. The cover index for first order stream corridors for Christians Creek was 23, suggesting that an improvement in the riparian buffer would significantly benefit the biological community. As a result of these and previous analysis, the TMDL analysis focused on a 330-foot wide corridor centering on first order streams. The existing loads for the Christians Creek impairment is 7,447 T/yr including sediment delivered from the first order corridor and stream channel erosion. The existing loads for area-adjusted Opequon Creek is 6,107 T/yr including sediment delivered from the first

TMDL Development

order corridor and stream channel erosion. These results provide some indication that the slightly impaired status of Christians Creek is related to the stream corridor. The existing conditions for the first order stream corridor are shown at the bottom of Table 8.9 and will be used to construct the Christians Creek benthic TMDL.

	is Creek and Re		11		
Sediment Sources	Christian	is Creek	Opequo	uon Creek	
	(T/yr)	(T/ha)	(T/yr)	(T/ha)	
LDR-PER-COR	0.003	0.025	1.827	0.084	
MDR-PER-COR	0.000	0.000	0.000	0.000	
HDR-PER-COR	0.000	0.000	0.0038	0.007	
COM-PER-COR	0.006	0.006	0.1768	0.048	
Transitional-COR	0.000	0.000	0.165	0.735	
Forest-COR	1.281	0.0152	15.779	0.052	
Urban Grass-COR	0.000	0.0000	0.214	0.021	
Pasture 1-COR	54.286	1.301	7.285	4.495	
Pasture 2-COR	44.872	0.461	74.278	1.962	
Pasture 3-COR	9.613	0.069	90.525	0.306	
High Tillage –COR	10.795	4.858	105.144	8.189	
Low Tillage-COR	8.395	1.259	41.247	4.190	
LDR-IMP-COR	0.021	0.205	2.757	0.216	
MDR-IMP-COR	0.000	0.000	0.000	0.000	
HDR-IMP-COR	0.000	0.0000	0.072	0.217	
COM-IMP-COR	0.060	0.205	0.465	0.205	
Channel Erosion-COR	7,173.120		5,767.353		
NPS Load	7,302		6107		
Point Source - Load	145		0.0		
Total - Cor	7,447		6,107		

Table 8.9Existing sediment loads from first-order stream corridors for
Christians Creek and Reference watershed Opequon Creek.

9. ALLOCATION

Total Maximum Daily Loads (TMDLs) consist of waste load allocations (WLAs, point sources) and load allocations (LAs, nonpoint sources) including natural background levels. Additionally, the TMDL must include a margin of safety (MOS) that either implicitly or explicitly accounts for uncertainties in the process (*e.g.*, landuses cover factors). The definition is typically denoted by the expression.

TMDL = WLAs + LAs + MOS

The TMDL becomes the amount of a pollutant that can be assimilated by the receiving water body and still achieve water quality standards. For sediment, the TMDL is expressed in terms of metric tons or metric tons per hectare.

This section describes the development of benthic TMDLs for sediment for three impaired stream segments using a reference watershed approach. The model was calibrated for hydrology and run for existing conditions over the five-year period April 1992 through September 1997. The average annual sediment load from the respective TMDL reference watersheds- area adjusted- was used to define the TMDL load for each impaired watershed. The target reduction load was calculated as the TMDL minus WLA a 10% explicit MOS. Since WLA is included in the calculation of the target reduction load, the existing watershed load (impaired watershed) only includes the nonpoint source loads plus stream channel loads. A sensitivity analysis was performed to determine the impact of uncertainties in input parameters.

9.1 Sensitivity Analysis

Sensitivity analyses were conducted to assess the sensitivity of the model to changes in hydrologic and water quality parameters as well as to assess the impact of unknown variability in source allocation (*e.g.*, seasonal and spatial variability of crop cover conditions, runoff curve number, etc.). Sensitivity analyses were run on the watershed parameters listed in Table 9.1. For a given simulation, the model parameters in Table 9.1 were set at the base value except for the parameter being evaluated. Each parameter was

evaluated through 10 and 50 percentage changes, from the base value. Results are listed in Table 9.2. The results show that the model is extremely sensitive to parameter changes resulting in major changes in either runoff or sediment. For example, decreases in the runoff curve number (*i.e.*, with a base value of 65) resulted in little change in channel erosion; however, the channel erosion output was extremely sensitive to increases in the curve number. The results tend to reiterate the importance of carefully evaluating conditions in the watershed and following a systematic protocol in establishing values for model parameters.

Table 9.1Base watershed parameter values used to determine hydrologic and
sediment response.

GWLF Watershed Parameter	Units	Base Value
Recession Coefficient	Day ⁻¹	0.384
Seepage Coefficient	Day ⁻¹	0.02
Unsaturated Water Capacity	(cm)	10
Erosivity Coefficient (April – September)		0.26
Erosivity Coefficient (October - March)		0.06
% developed land	(%)	10%
Livestock density	(AU/ac)	0.1785
Area weighted soil erodibility (K-factor)		0.28
Area weighted runoff curve number		65
Total Stream Length	(m)	684590
Mean Channel Depth	(m)	1.5

Model Parameter	Parameter Change	% Change in Runoff	% Change in Sediment Load	% Change in Channel Sediment Load
Recession Coefficient	-50	-50	-4.76	-11.4
Recession Coefficient	-10	-3	-0.06	-1.71
Recession Coefficient	10	3	9.6	1.92
Recession Coefficient	50	50	19	4.57
Seepage Coefficient	-50	17.1	0.06	0.002
Seepage Coefficient	-10	2.94	0.08	0.001
Seepage Coefficient	10	-2.74	-0.08	-0.001
Seepage Coefficient	50	-12.1	-0.35	-0.002
Unsaturated Water Capacity	-50	7.89	0.298	0.002
Unsaturated Water Capacity	-10	1	2.6	0.001
Unsaturated Water Capacity	10	-1	-2.5	-0.001
Unsaturated Water Capacity	50	4.2	-0.1	-0.002
Erosivity Coefficient (April – September)	-50	Insensitive	-39.7	-49
Erosivity Coefficient (April – September)	-10	Insensitive	-9.5	-11.9
Erosivity Coefficient (April – September)	10	Insensitive	9.58	11.2
Erosivity Coefficient (April – September)	50	Insensitive	48	51.6
% developed land	-50	Insensitive	insensitive	Insensitive
% Developed land	-10	Insensitive	Insensitive	Insensitive
% Developed land	10	Insensitive	Insensitive	Insensitive
% Developed land	50	Insensitive	Insensitive	Insensitive
No. of livestock	-50	Insensitive	Insensitive	Insensitive
No. of livestock	-10	Insensitive	Insensitive	Insensitive
No. of livestock	10	Insensitive	Insensitive	Insensitive
No. of livestock	50	Insensitive	Insensitive	Insensitive
Area weighted soil erodibility	-50	Insensitive	-50	Insensitive
Area weighted soil erodibility	-10	Insensitive	-10	Insensitive
Area weighted soil erodibility	10	Insensitive	10	Insensitive
Area weighted soil erodibility	50	Insensitive	10	55000
Area weighted runoff curve number	-50	-4.02	-1.20	Insensitive
Area weighted runoff curve number	-10	-1.5	-3.70	Insensitive
Area weighted runoff curve number	10	1.5	3.87	10700
Area weighted runoff curve number	50	4.02	1.23	143200
Total Stream Length	-50	Insensitive	Insensitive	-49
Total Stream Length	-10	Insensitive	Insensitive	-11.9
Total Stream Length	10	Insensitive	Insensitive	11.2
Fotal Stream Length	50	Insensitive	Insensitive	51.6
Mean Channel Depth	-50	Insensitive	Insensitive	-49
Mean Channel Depth	-10	Insensitive	Insensitive	-8.9
Mean Channel Depth	10	Insensitive	Insensitive	11.2
Mean Channel Depth	50	Insensitive	Insensitive	51.6

 Table 9.2
 Sensitivity of model response to change in selected parameters.

9.2 Moffett Creek Benthic TMDL

The Moffett Creek benthic TMDL was developed for sediment, with Mill Creek as the reference watershed. The area of Mill Creek was reduced by the ratio of the reference watershed area to the impaired area. After adjustment by the factor 0.6678, the Mill Creek reference watershed area equaled the Moffett Creek watershed area (6878 ha). Landuse acreage for Mill Creek was reduced while maintaining the original landuse distribution.

The target TMDL sediment load for Moffett Creek is the average annual sediment load from the area-adjusted Mill Creek watershed under existing conditions (Table 9.3). The TMDL for Moffett Creek includes three components – waste load allocations (WLA) from point sources, the load allocation from nonpoint sources (LA), and a margin of safety (MOS). The margin of safety was explicitly set to 10% to account for uncertainty in developing benthic TMDLs. The WLA was calculated as the sum of all permitted point source discharges. The LA was calculated as the target TMDL load minus the WLA load minus the MOS.

Table 9.3TMDL for Moffett Creek Impairment

		-		
Impairment	WLA	LA	MOS	TMDL
	(T/yr)	(T/yr)	(T/yr)	(T/yr)
Moffett Creek	0	3,660	407	4,067

9.2.1 Future Growth

The Augusta County Comprehensive Plan forecasts 1,000 to 2,000 acres for urban development and another 4,000 to 10,000 acres for rural development over the next 20-years. Rural residential development ranges from one dwelling per 2 acres to one dwelling per 5 acres with no development zones. Urban development is recommended not to exceed 3 dwellings per gross acre. Based on the expected growth, and assuming that rural development would be somewhat proportional to the area of the Moffett Creek watershed to total area of Augusta County the expected number of rural dwellings would be 60. Assuming development is on 5-acre lots, a typical trend, a total of 300 acres would be impacted. Based on this scenario, projected future sediment loads for Moffett

Creek are expected to be insignificant and a TMDL modeling run was considered unnecessary.

9.2.2 Sediment Load Reductions for Moffett Creek Impairment

The reduction required to meet the TMDL from existing conditions in Moffett Creek are given in Table 9.4. A review of existing conditions given in Table 8.7 shows that most reductions must come from the agricultural sediment source categories. The pastureland category (pasture 1, pasture 2, and pasture 3) exceeds the reference watershed targets by a factor of three. For allocation scenarios, the agricultural sub-categories for pastureland and cropland have been combined into two categories (*i.e.*, cropland and pastureland) in Table 9.5. For this situation, the majority of the reduction must come from pastureland. Reductions could be achieved through pasture improvement, better pasture management, or less intensive grazing. Two sediment reduction alternatives are presented in Table 9.5. Sediment reduction Alternative 1 requires a 66% reduction in sediment loads from pastureland and 40% reduction in sediment loads from cropland. In Alternative 2, a 70.9% reduction in sediment loads from pastureland is required to achieve the sediment standard established by reference watershed Mill Creek.

L and Summany	Moffett Creek	Red	luctions Required
Load Summary	(T/yr)	(T/yr)	(% of existing load)
Existing Load	9,589	5,929	61.8
TMDL	3,864		
Target Modeling Load	3,660		

 Table 9.4
 Required sediment reductions for Moffett Creek Impairment.

				1			
Sediment Source	Existing		Sediment Load Reductions				
	Condition	Alternative 1		Alternative 2			
Categories	(T/yr)	(%)	(T/yr)	(%)	(T/yr)		
LDR-PER	0.381	0	0.381		0.381		
HDR-PER	0.000	0	0.000		0.000		
COM-PER	0.003	0	0.003		0.003		
Transitional	1.174	0	1.174		1.174		
Forest	177.686	0	177.686		177.686		
Urban Grass	0.000	0	0.000		0.000		
Pastureland	8,385	66.0	2,851	70.9	2,440		
Cropland	1,019	40.0	611		1,018.893		
LDR-IMP	0.573	0	0.573		0.573		
HDR-IMP	0.000	0	0.000		0.000		
COM-IMP	0.009	0	0.009		0.009		
Channel Erosion	5.389	0	5.389		5.389		
WLA	0.000	0	0.000		0.000		
Total	9,589		3,647		3,644		
Target Allocatio	n Load (TMDL-M	IOS-WLA)	3,660		3,660		

 Table 9.5
 TMDL sediment reductions for Moffett Creek Impairment.

9.3 Upper Middle River Benthic TMDL

The Upper Middle River benthic TMDL was developed for sediment, with Hays Creek as the reference watershed. The area of Hays Creek was reduced by the ratio of the reference watershed area to the impaired area. After adjustment by the factor 0.5973, the Hays Creek reference watershed area equaled the Moffett Creek watershed area (12,312 ha). Landuse acreage for Hays Creek was reduced while maintaining the original landuse distribution.

The target TMDL load for Upper Middle River is the average annual load from the areaadjusted Hays Creek watershed under existing conditions (Table 9.6). The MOS was explicitly set to 10% to account for uncertainty in developing benthic TMDLs. The WLA was calculated as the sum of all permitted point source discharges. The LA was calculated as the target TMDL load minus the WLA load minus the MOS.

Impairment	WLA (T/yr)	LA (T/yr)	MOS (T/yr)	TMDL (T/yr)
Upper Middle River	1.355	5,683	632	6,316
VA0060917	0.180			
VA0091219	1.175			

Table 9.6TMDL for Upper Middle River Impairment.

9.3.1 Future Growth

Future growth in the Upper Middle River watershed, which is very rural, was analyzed in the same manner as it was for Moffett Creek. Assuming development is on five-acre lots, a total of 500 acres would be impacted. Based on this scenario, projected future sediment loads for Upper Middle River are expected to be insignificant, and a TMDL modeling run was considered unnecessary.

9.3.2 Sediment Load Reductions for Upper Middle River Impairment

The reduction required to meet the TMDL from existing conditions in Upper Middle River are given in Table 9.7. A review of existing conditions given in Table 8.8 shows that most reductions must come from the agricultural or forestry sediment source categories. The pastureland category (pasture 1, pasture 2, and pasture 3) exceeds the reference watershed targets by a factor of two. For allocation scenarios, the agricultural sub-categories for pastureland and cropland have been combined into two categories cropland and pastureland in Table 9.8. For this situation, the majority of the reduction must come from pastureland and cropland. Reductions could be achieved through pasture improvement, better pasture management, less intensive grazing, and minimum tillage operations, during timber harvesting. Two sediment reduction alternatives are presented in Table 9.8. Sediment reduction Alternative 1 requires a 56.5% reduction in sediment loads from pastureland, and a 53% reduction in sediment loads from cropland. In Alternative 2, a 64% reduction in sediment loads from pastureland established by reference watershed Hays Creek.

Table 9.7 Required sediment reductions for Opper Middle River impairment.						
Load Summary		Upper Middle River	Reductions Required			
Loau S	unnnar y	(T/yr)	(T/yr)	(% of existing load)		
Existing Load		12,162	6,479	53.3		
TMDL		6,316				
Target Modelin	g Load	5,683				

 Table 9.7
 Required sediment reductions for Upper Middle River Impairment.

Sediment Source	Existing		Sediment Loa	d Reductions	
	Conditions	Altern	ative 1	Alter	native 2
Categories	(T/yr)	(%)	(T/yr)	(%)	(T/yr)
LDR-PER	0.737		0.737		0.737
HDR-PER	0.000		0.000		0.000
COM-PER	0.000		0.000		0.000
Transitional	188.777		188.777		188.777
Forest	173.249		173.249		173.249
Pastureland	10,355	56.5	4,504	64	3,728
Cropland	1,439	53.0	676		1,438.536
LDR-IMP	1.164		1.164		1.164
HDR-IMP	0.000		0.000		0.000
COM-PER	0.000		0.000		0.000
Channel Erosion	4.648		4.648		4.648
WLA	115.000		115.000		115.000
Totals	12,162		5,664		5,650
Target Allo	cation Load (TMDL	-MOS-WLA)	5,683		5,683

 Table 9.8
 TMDL sediment reductions for Upper Middle River Impairment.

9.4 Christians Creek Benthic TMDL

The Christians Creek benthic TMDL was developed for sediment, with Opequon Creek as the reference watershed. The area of Opequon Creek was increased by the ratio of the impaired watershed area to the reference watershed area. After adjustment by the factor 2.029, the Opequon Creek reference watershed area equaled the Christians Creek watershed area (27,861ha). Landuse acreage for Opequon Creek was increased while maintaining the original landuse distribution. As noted in earlier discussion, the benthic TMDL for sediment was developed for a 330-foot corridor centering on first order streams.

The target TMDL load for Christians Creek is the average annual load from the areaadjusted Opequon Creek watershed under existing conditions (Table 9.9). The MOS was explicitly set to 10% to account for uncertainty in developing benthic TMDLs. The WLA was calculated as the sum of all permitted point source discharges. The LA was calculated as the target TMDL load minus the WLA load minus the MOS.

Impairment	WLA	LA	MOS	TMDL
=	(T/yr)	(T/yr)	(T/yr)	(T/yr)
Christians Creek	145	5,406	617	6,168
VA0020427	Inactive			
VA0022292	Inactive			
VA0022306	Inactive			
VA0025291	<i>99.483</i>			
VA0086738	Not P. for TSS			
VA0089061	2.425			
VA0089362	Inactive			
VA0090417	15.545			
VAG401896	0.041			
VAG401967	0.041			
VAG401969	0.041			
VAG401960	0.041			
VAG401959	0.041			
VAG401449	0.041			
VAG401443	0.041			
VAG401195	0.041			
VAG401082	0.041			
VAG401979	0.041			
VAG401038	0.041			
VAR100595	0.785			
VAR100580	Inactive			
VAR100583	Inactive			
VAR100635	Inactive			
VAR102392	6.085			
VAR101656	7.224			
VAR101657	0.840			
VAR101710	0.538			
VAR101719	1.806			
VAR101725	0.895			
VAR101780	0.094			
VAR051334	0.790			
VAR051405	8.148			

Table 9.9TMDL for Christians Creek Impairment.

9.4.1 Future Growth

The Augusta County Comprehensive Plan forecasts 1,000 to 2,000 acres for urban development and another 4,000 to 10,000 acres for rural development over the next 20 years. Rural residential development ranges from one dwelling per 2 acres to one dwelling per 5 acres with no development zones. Urban development is recommended not to exceed 3 dwellings per gross acre. Based on the expected growth, and assuming that rural development would be somewhat proportional to the area of the Christians Creek watershed to the total area of Augusta County, the expected number of rural dwellings would be 220. Assuming development is on 5-acre lots, a typical trend, a total

of 1100 acres would be impacted with 12 acres being impervious. Since Christians Creek is near Urban Service Areas, that are expected to have sufficient capacity to support expected development over the next twenty years, some urban development would be expected. Assuming that urban development occurs based on the above proportionality, 1100 acres would be expected to convert to high density residential or some form of commercial development. Based on the above assumptions, the two future development scenarios were modeled. The first scenario assumes that 1100 acres will convert from forestry and pasture to low density residential. The second scenario assumes that the same acreage will be converted to commercial landuse. The results are summarized in Table 9.10 for first order stream corridor.

Scenario		% Landus	e change		Loads
	Pasture	Forest	LDR	HDR/ COM	First Order Stream Corridor (T/yr)
Projected Future Load (LDR)	-3.28	-6.7	168.0		7,310
Projected Future Load (HDR/COM)	-3.28	-6.7		269.0	7,381
Existing Load	0	0	0	0	7,447

 Table 9.10
 Projected future sediment loads for Christians Creek Impairment.

The future development load resulted in a maximum increase of 4% to the total watershed load. A slight reduction (less than 1%) was noted in the first order steam corridor. This was expected because the change was not targeted specifically to the corridor where zoning generally restricts development in the flood plain. Since the watershed sediment load for future conditions still remains well below the corresponding sediment load from the reference watershed, and the sediment load for the stream corridor was not significantly impacted (Table 9.10), projected future loads were not included into sediment load allocations required to meet the TMDL established for the first order stream corridor.

9.4.2 Sediment Load Reductions for Christians Creek Impairment

The reductions required to meet the TMDL from future conditions in Christians Creek are given in Table 9.11. Grouping nonpoint source loads into agriculture, urban and forestry facilitated the development of TMDL allocation scenarios (Table 9.12). The predominant sediment load is from the stream channel. To meet the target-modeling load, a 25.9% overall sediment reduction will be required (Table 9.11). Two alternatives are presented in Table 9.12. In Alternative 1, the required sediment reduction is allocated to the stream channel. In Alternative 2, allocations are also made to pastureland and cropland within the 330-foot stream corridor. Alternatives to achieve sediment load reductions could include streamside fencing, streambank stabilization, stormwater management from urban areas, improved pasture management in the stream corridor zone, etc.

Lood Summony	Christians Creek		Reductions Required	
Load Summary	(T /yr)	(T/yr)	(% of existing load)	
Projected Future Load (LDR)	7,165	1,751	24.0	
Projected Future Load (COM)	7,236	1,822	25.0	
Existing Load	7,302	1,888	25.9	
TMDL	6,168			
WLA	145			
MOS	617			
Target Modeling Load	5,406			

 Table 9.11
 Required sediment reductions for Christians Creek Impairment.

Codimont Compos	Existing		Sediment Lo	ad Reduction	ns
Sediment Source	Load	Alterna	ative 1	Alte	ernative 2
Categories	(T/yr)	(%)	(T/yr)	(%)	(T/yr)
LDR-PER-COR	0.003		0.003		0.003
HDR-PER-COR	0.000		0.000		0.000
COM-PER-COR	0.006		0.006		0.006
Transitional-COR	0.000		0.000		0.000
Forest-COR	1.281		1.281		1.281
Pastureland	108.771		108.771	50	54.4
Cropland	19.190		19.190	50	9.6
LDR-IMP-COR	0.021		0.021		0.021
HDR-IMP-COR	0.000		0.000		0.000
COM-IMP-COR	0.060		0.060		0.060
Channel Erosion-COR	7,173	28.4	5,139	27.5	5,200
NPS + Channel	7,302		5,268		5,265
WLA	145		145		145
Totals	7,447		5,413		5,410
Target Allocation	Load (TMDL-	MOS-WLA)	5,414		5,414
		TMDL	6,168.00		6,168.000

 Table 9.12
 TMDL sediment load reductions for Christians Creek Impairment.

PART IV: IMPLEMENTATION AND PUBLIC PARTICIPATION

10. IMPLEMENTATION

The goal of the TMDL program is to establish a three-step path that will lead to attainment of water quality standards. The first step in the process is to develop TMDLs that will result in meeting water quality standards. This report represents the culmination of that effort for the bacteria and benthic impairments in the Middle and Upper South River watersheds. The second step is to develop a TMDL implementation plan. The final step is to implement the TMDL implementation plan, and to monitor stream water quality to determine if water quality standards are being attained.

Once a TMDL has been approved by the civilian State Water Control Board and then EPA, measures must be taken to reduce pollution levels in the stream. These measures, which can include the use of better treatment technology and the installation of best management practices (BMPs), are implemented in an iterative process that is described along with specific BMPs in the implementation plan. The process for developing an implementation plan has been described in the recent *Guidance Manual for Total Maximum Daily Load Implementation Plans*, published in July 2003 and available upon request from the VADEQ and VADCR TMDL project staff. This document is also available on the VADEQ web site: http://www.deq.state.va.us/tmdl/implans/ipguide.pdf. With successful completion of implementation plans, Virginia will be well on the way to restoring impaired waters and enhancing the value of this important resource. Additionally, development of an approved implementation plan will improve a locality's chances for obtaining financial and technical assistance during implementation.

10.1 Staged Implementation

In general, Virginia intends for the required reductions to be implemented in an iterative process that first addresses those sources with the largest impact on water quality. For example, in agricultural areas of the watershed, the most promising management practice to control bacteria and minimize streambank erosion is livestock exclusion from streams. This has been shown to be very effective in lowering bacteria concentrations in streams, both by reducing the direct cattle deposits and by providing additional riparian buffers. Reduced trampling and soil shear on streambanks by livestock has been shown to reduce

bank erosion. Improved pasture management, including less intensive grazing, minimization of animal concentrations by frequent movement of winter feeding areas, improving pasture forages, etc, can significantly reduce soil loss from pasture areas. Reducing tillage operations, farming on the contour, strip cropping, maintaining a winter cover crop, etc., have been demonstrated as effective measure to reduce erosion from cropland agriculture.

Additionally, in both urban and rural areas, reducing the human bacteria loading from failing septic systems should be a primary implementation focus because of its health implications. This component could be implemented through education on septic tank pump-outs as well as a septic system repair/replacement program and the use of alternative waste treatment systems.

In urban areas, reducing the human bacteria loading from leaking sewer lines could be accomplished through a sanitary sewer inspection and management program. Implementable BMPs appropriate for controlling urban wash-off from parking lots and roads may include more restrictive ordinances to reduce fecal loads from pets, improved garbage collection and control, and improved street cleaning.

The iterative implementation of BMPs in the watershed has several benefits:

- 1. It enables tracking of water quality improvements following BMP implementation through follow-up stream monitoring;
- 2. It provides a measure of quality control, given the uncertainties inherent in computer simulation modeling;
- 3. It provides a mechanism for developing public support through periodic updates on BMP implementation and water quality improvements;
- 4. It helps ensure that the most cost effective practices are implemented first; and
- 5. It allows for the evaluation of the adequacy of the TMDL in achieving water quality standards.

Watershed stakeholders will have opportunity to participate in the development of the TMDL implementation plan. While specific goals for BMP implementation will be established as part of the implementation plan development, the following Stage I scenarios are targeted at controllable, anthropogenic bacteria and sediment sources.

Stage I scenarios - Bacteria

The goal of the Stage I scenarios is to reduce the bacteria loadings from controllable sources, excluding wildlife. The Stage I scenarios were generated with the same model setup as was used for the TMDL allocation scenarios.

The Stage I scenario is intended to establish an approachable interim goal and determine the anticipated percentage of violations based on the modeled output. The Stage I allocations for the Middle River impairments require a 100% reduction in loads from sewer overflows and uncontrolled residential discharges (straight pipes), a 100% reduction in direct in-stream loads from livestock, 50% reduction in land-based loads from urban and agricultural sources, and a 0% reduction in all wildlife loads. The Stage I allocations for the South River impairment requires a 100% reduction in loads from sewer overflows and uncontrolled residential discharges (straight pipes), a 55% reduction in direct in-stream loads from livestock, 50% reduction in land-based loads from sewer overflows and uncontrolled residential discharges (straight pipes), a 55% reduction in direct in-stream loads from livestock, 50% reduction in land-based loads from urban and agricultural sources, and a 0% reduction in all wildlife loads. Table 10.1 contains these reductions along with a projected percent of violation occurrence. Tables 10.2 through 10.7 detail the load reductions required for meeting the Stage I Implementation.

	1100000	on per ce		ine stage i	mpiem	circacioni		
	Percer	Percent Reduction in Loading from Existing Condition Percent Violat					/iolations	
Impairment	Direct Wildlife	NPS Wildlife	Direct Livestock	NPS Pasture / Livestock	Res./ Urban	Straight Pipe/ Sewer Overflow	GM > 126 cfu/ 100ml	Single Sample Exceeds 235 cfu/ 100ml
Upper Middle	0	0	100	50	50	100	0	6.9
Moffett Creek	0	0	100	50	50	100	53	17
Lewis Creek	0	0	100	50	50	100	38	53
Polecat Draft	0	0	100	50	50	100	2	5
Lower Middle	0	0	100	50	50	100	27	9
South River	0	0	55	50	50	100	26	12

 Table 10.1
 Reduction percentages for the Stage I implementation.

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Allocation Run (cfu/yr)	Percent Reduction
Land Based			
Residential	1.42E+14	7.12E+13	50
Commercial	6.02E+11	3.01E+11	50
Farmstead	1.88E+13	9.42E+12	50
Cropland	1.23E+16	6.15E+15	50
Livestock Access	7.70E+14	3.85E+14	50
Improved Pasture	1.01E+16	5.06E+15	50
Unimproved Pasture	2.24E+14	1.12E+14	50
Livestock Operations	6.89E+12	3.45E+12	50
Forest	1.12E+15	1.12E+15	0
Water	0.00E+00	0.00E+00	0
Direct			
Livestock	1.89E+14	0.00E+00	100
Wildlife	6.13E+13	6.13E+13	0
Straight Pipes and Sewer Overflows	1.33E+12	0.00E+00	100

Table 10.2	Land-based and Direct nonpoint source load reductions in the Upper
	Middle River impairment for Stage I allocation.

Table 10.3Land-based and Direct nonpoint source load reductions in the Moffett
Creek impairment for Stage I allocation.

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Allocation Run (cfu/yr)	Percent Reduction
Land Based			
Residential	2.86E+13	1.43E+13	50
Commercial	2.68E+10	1.34E+10	50
Farmstead	1.18E+13	5.92E+12	50
Cropland	7.44E+15	3.72E+15	50
Livestock Access	2.58E+14	1.29E+14	50
Improved Pasture	3.61E+15	1.80E+15	50
Unimproved Pasture	4.01E+14	2.01E+14	50
Livestock Operations	4.31E+11	2.15E+11	50
Forest	3.88E+14	3.88E+14	0
Water	0.00E+00	0.00E+00	0
Direct			
Livestock	6.66E+13	0.00E+00	100
Wildlife	1.84E+13	1.84E+13	0
Straight Pipes and Sewer Overflows	3.07E+11	0.00E+00	100

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Allocation Run (cfu/yr)	Percent Reduction
Land Based			
Residential	6.26E+14	3.13E+14	50
Commercial	5.91E+12	2.95E+12	50
Farmstead	3.38E+12	1.69E+12	50
Cropland	5.54E+15	2.77E+15	50
Livestock Access	2.23E+14	1.11E+14	50
Improved Pasture	2.29E+15	1.14E+15	50
Unimproved Pasture	1.66E+13	8.30E+12	50
Livestock Operations	5.35E+09	2.68E+09	50
Forest	1.70E+14	1.70E+14	0
Water	0.00E+00	0.00E+00	0
Direct			
Livestock	4.14E+03	0.00E+00	100
Wildlife	1.97E+13	1.97E+13	0
Straight Pipes and Sewer Overflows	4.39E+11	0.00E+00	100

Table 10.4	Land-based and Direct nonpoint source load reductions in the Lewis
	Creek impairment for Stage I allocation.

Table 10.5	Land-based and Direct nonpoint source load reductions in the Polecat
	Draft impairment for Stage I allocation.

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Allocation Run (cfu/yr)	Percent Reduction
Land Based			
Residential	1.55E+13	7.76E+12	50
Commercial	0.00E+00	0.00E+00	50
Farmstead	2.63E+12	1.32E+12	50
Cropland	2.23E+15	1.11E+15	50
Livestock Access	8.84E+13	4.42E+13	50
Improved Pasture	1.41E+15	7.06E+14	50
Unimproved Pasture	4.80E+11	2.40E+11	50
Livestock Operations	7.91E+10	3.96E+10	50
Forest	3.47E+13	3.47E+13	0
Water	0.00E+00	0.00E+00	0
Direct			
Livestock	2.18E+13	0.00E+00	100
Wildlife	5.82E+12	5.82E+12	0
Straight Pipes and Sewer Overflows	6.15E+10	0.00E+00	100

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Allocation Run (cfu/yr)	Percent Reduction
Land Based			
Residential	7.35E+13	3.68E+13	50
Commercial	1.45E+12	7.26E+11	50
Farmstead	1.06E+13	5.29E+12	50
Cropland	2.18E+16	1.09E+16	50
Livestock Access	6.45E+14	3.22E+14	50
Improved Pasture	9.52E+15	4.76E+15	50
Unimproved Pasture	1.26E+14	6.28E+13	50
Livestock Operations	8.57E+10	4.28E+10	50
Forest	2.34E+14	2.34E+14	0
Water	0.00E+00	0.00E+00	0
Direct			
Livestock	2.03E+14	0.00E+00	100
Wildlife	7.26E+15	7.26E+15	0
Straight Pipes and Sewer Overflows	1.93E+11	0.00E+00	100

Table 10.6	Land-based and Direct nonpoint source load reductions in the Lower
	Middle River impairment for Stage I allocation.

Table 10.7	Land-based and Direct nonpoint source load reductions in the Upper
	South River impairment for Stage I allocation.

Source	Total Annual Loading for Existing Run (cfu/yr)	Total Annual Loading for Allocation Run (cfu/yr)	Percent Reduction
Land Based			
Residential	1.59E+14	7.96E+13	50
Commercial	1.12E+13	5.60E+12	50
Farmstead	1.23E+13	6.13E+12	50
Cropland	1.85E+15	9.23E+14	50
Livestock Access	2.80E+14	1.40E+14	50
Improved Pasture	3.04E+15	1.52E+15	50
Unimproved Pasture	7.09E+13	3.54E+13	50
Livestock Operations	3.30E+11	1.65E+11	50
Forest	7.80E+14	7.80E+14	0
Water	0.00E+00	0.00E+00	0
Direct			
Livestock	1.77E+15	7.97E+14	55
Wildlife	3.37E+13	3.37E+13	0
Straight Pipes and Sewer Overflows	2.57E+12	0.00E+00	100

Stage I scenarios – Sediment

The Stage I goal was to reduce sediment loads in Christians Creek, Moffett Creek, and Upper Middle River to within 40% of required target reductions. The Stage I

implementation target reduction goals are as follows; Christians Creek impairment 6,169 T/yr (17% reduction), Moffett Creek impairment 6,032 T/yr (37% reduction), and Upper Middle River impairment 8,206 T/yr (33% reduction). The proposed management scenarios to achieve the Stage I water quality goals are summarized in Tables 10.8, 10.9, and 10.10 for Moffett Creek, Upper Middle River and Christians Creek, respectively.

An implementation scenario for benthic (sediment) could involve changes in landuse management and/or farm operations. For example, conversion from convention tillage operations to less intensive tillage such as no-till planting into grass, cover crop or corn stubble mulch. Other options could include improving pasture management, particularly on steep slopes, establishing a riparian buffer, exclusion of livestock from stream, and improved stormwater management from urban areas.

Sediment Source Categories	Management Scenarios	Area Affected (ha)	Existing Condition (T/yr)	Benefit (T/ha)	Implem. Condition (T/yr)
LDR-PER			0.381	0	0.381
HDR-PER			0.000	0	0.000
COM-PER			0.003	0	0.003
Transitional			1.174	0	1.174
Forest			177.686	0	177.686
Urban Grass			0.000	0	0.000
Pastureland Cropland	Pasture Improvement (rotational grazing, improved grasses, lower animal densities on steep slopes, reduce overgrazing by 90%) 38% Redustion in sediment loads. High Tillage to Low Tillage (e.g. no-tillage), strip cropping, rotations) 36% Redustion in sediment loads.	790 50	8,385.159 1,018.893	4.052 7.30	5,184.079 653.893
LDR-IMP			0.573	0	0.573
HDR-IMP			0.000	0	0.000
COM-IMP			0.009	0	0.009
Channel			5.389	0	5.389
Erosion					
WLA			0.000	0	0.000
Total			9,589		6,023
	Stage I Implementation Target (60% imp				6,032
	Target Allocation Load (TMDL	-MOS-WLA)			3,660

Table 10.8Management scenarios with sediment reductions for Moffett Creek
Impairment.

Table 10.9	Management scenarios with sediment reductions for Upper Middle
	River Impairment.

Sediment Source	Management At Scenarios At	Area ffected	Existing Condition	Benefit	Implem. Condition
Categories		(ha)	(T/yr)	(T/ha)	(T/yr)
LDR-PER			0.737	0	0.737
HDR-PER			0.000	0	0.000
COM-PER			0.000	0	0.000
Transitional			188.777	0	188.777
Forest			173.249	0	173.249
Pastureland	Pasture Improvement (rotational grazing, improved grasses, lower				
	animal densities on steep slopes, reduce overgrazing by 90%) 30% Redustion in sediment loads.	721	10,354.643	4.328	7,234.155
Cropland	High Tillage to Low Tillage (e.g. no-				
	tillage), strip cropping, rotations) 66% Redustion in sediment loads.	200	1,438.536	4.764	485.736
LDR-IMP			1.164	0	1.164
HDR-IMP			0.000	0	0.000
COM-IMP			0.000	0	0.000
Channel			1 (10	0	1 (10
Erosion			4.648	0	4.648
WLA			1.355	0	1.355
Total			12,162		8,203
	Stage I Implementation Target (60% implem	entation)	<i>,</i>		8,206
	Target Allocation Load (TMDL-MOS-WLA)				5,683

Sediment Source Categories	Management Scenarios	Area/Len. Affected (ha) : (m)	Existing Condition (T/yr)	Benefit (t/ha) : (T/m)	Implem. Condition (T/yr)
LDR-PER			0.003	0	0.003
HDR-PER			0.000	0	0.000
COM-PER			0.006	0	0.006
Transitional			0.000	0	0.000
Forest			1.281	0	1.281
Pastureland	Pasture Improvement (rotational grazing, improved grasses, lower				
	animal densities on steep slopes, reduce overgrazing by 90%) 51% Redustion in sediment loads.	45	108.771	1.232	53.331
Cropland	High Tillage to Low Tillage (e.g. no-				
	tillage), strip cropping, rotations) 94% Redustion in sediment loads.	5	19.190	3.598	1.200
LDR-IMP			0.021	0	0.021
HDR-IMP			0.000	0	0.000
COM-IMP			0.060	0	0.060
Channel	Improve riparian buffer, livestock				
Erosion	exclusion, urban stormwater management	7,550	7,173.120	0.16	5965.120
	17% Redustion in sediment loads.				
WLA			145	0	145
Total			7,447		6,166
	Stage I Implementation Target (60% implementation)				6,169
	Target Allocation Load (TMDL	-MOS-WLA)			5,414

Table 10.10Management scenarios with sediment reductions for Christians CreekImpairment-Stream Corridor.

The development of the implementation plan is expected to be an iterative process, with monitoring data refining its final design. Subsequent refinements will be made as the progress toward meeting milestones and the expressed TMDL goals is assessed. As practices are implemented, periodic analyses of water quality conditions will be conducted to evaluate the progress toward meeting end goals.

10.2 Link to Ongoing Restoration Efforts

Implementation of this TMDL will be integrated into on-going water quality improvement efforts aimed at restoring water quality in the Middle River basin. Several BMPs known to be effective in controlling bacteria have also been identified for implementation as part of this effort. For example, management of on-site waste management systems, management of livestock and manure, and pet waste management are among the components of a nonpoint source implementation strategy.

10.3 Reasonable Assurance for Implementation

10.3.1 Follow-up Monitoring

VADEQ will continue monitoring the Middle River watershed in accordance with its ambient watershed monitoring program to evaluate reductions in fecal bacteria counts and the effectiveness of TMDL implementation in attainment of water quality standards.

Watershed monitoring stations are designed to provide complete coverage of every watershed in Virginia. Two of the major data users in the Commonwealth (the Department of Environmental Quality and the Department of Conservation and Recreation) have indicated that this is an important function for ambient water quality monitoring.

Watershed stations are located at the mouth and within the watershed, based on a censussiting scheme. The number of stations in the watershed is determined by the NPS priority ranking thus focusing our resources on known problem areas. Watersheds are monitored on a rotating basis such that, in the 6-year assessment cycle, all 493 watersheds are monitored. These stations will be sampled at a frequency of once every other month for a two-year period on a 6-year rotating basin basis.

10.3.2 Regulatory Framework

While section 303(d) of the Clean Water Act and current EPA regulations do not require the development of TMDL implementation plans as part of the TMDL process, they do require reasonable assurance that the load and wasteload allocations can and will be implemented. Additionally, Virginia's 1997 Water Quality Monitoring, Information and Restoration Act (the "Act") directs the State Water Control Board to "*develop and implement a plan to achieve fully supporting status for impaired waters*" (Section 62.1-44.19.7). The Act also establishes that the implementation plan shall include the date of expected achievement of water quality objectives, measurable goals, corrective actions necessary and the associated costs, benefits and environmental impacts of addressing the impairments. EPA outlines the minimum elements of an approvable implementation plan in its 1999 *Guidance for Water Quality-Based Decisions: The TMDL Process*. The listed elements include implementation actions/management measures, timelines, legal or regulatory controls, time required to attain water quality standards, monitoring plans and milestones for attaining water quality standards.

Watershed stakeholders will have opportunities to provide input and to participate in the development of the implementation plan, which will also be supported by the regional and local offices of VADEQ, VADCR, and other cooperating agencies.

Once developed, VADEQ will take TMDL implementation plans to the State Water Control Board (SWCB) for approval as the plan for implementing the pollutant allocations and reductions contained in the TMDLs. Also, VADEQ will request SWCB authorization to incorporate the TMDL implementation plan into the appropriate Water Quality Management Plan (WQMP) in accordance with the CWA's Section 303(e). In response to a Memorandum of Understanding (MOU) between EPA and VADEQ, VADEQ also submitted a draft Continuous Planning Process to EPA in which VADEQ commits to regularly updating the WQMPs. Thus, the WQMPs will be, among other things, the repository for all TMDLs and TMDL implementation plans developed within a river basin.

10.3.3 Stormwater Permits

It is the intention of the Commonwealth that the TMDL will be implemented using existing regulations and programs. One of these regulations is the VPDES Permit Regulation (9 VAC 25-31-10 et seq.). Section 9 VAC 25-31-120 describes the requirements for stormwater discharges. Also, federal regulations state in 40 CFR §122.44(k) that National Pollutant Discharge Elimination System (NPDES) permit conditions may consist of "*Best management practices to control or abate the discharge of pollutants when:... (2) Numeric effluent limitations are infeasible...*".

There are currently no MS4 permits in the Middle River watershed. For MS4/VPDES general permits, VADEQ expects revisions to the permittee's Stormwater Pollution Prevention Plans to specifically address the TMDL pollutants of concern. VADEQ anticipates that BMP effectiveness would be determined through ambient in-stream monitoring. This is in accordance with recent EPA guidance (EPA Memorandum on

TMDLs and Stormwater Permits, dated November 22, 2002). If future monitoring indicates no improvement in stream water quality, the permit could require the MS4 to expand or better tailor its BMPs to achieve the TMDL reductions. However, only failing to implement the required BMPs would be considered a violation of the permit. VADEQ acknowledges that it may not be possible to meet the existing water quality standard because of the wildlife issue associated with a number of bacteria TMDLs (see section 10.3.5 below). At some future time, it may therefore become necessary to investigate the stream's use designation and adjust the water quality criteria through a Use Attainability Analysis. Any changes to the TMDL resulting from water quality standards changes would be reflected in the permittee's Stormwater Pollution Prevention Plan required by the MS4/VPDES permit.

Additional information on Virginia's Storm Water Phase 2 program and a downloadable menu of Best Management Practices and Measurable Goals Guidance can be found at http://www.deq.state.va.us/water/bmps.html.

10.3.4 Implementation Funding Sources

One potential source of funding for TMDL implementation is Section 319 of the Clean Water Act. Section 319 funding is a major source of funds for Virginia's Nonpoint Source Management Program. Other funding sources for implementation include the U.S. Department of Agriculture's Conservation Reserve Enhancement and Environmental Quality Incentive Programs, the Virginia State Revolving Loan Program, and the Virginia Water Quality Improvement Fund. The TMDL Implementation Plan Guidance Manual contains additional information on funding sources, as well as government agencies that might support implementation efforts and suggestions for integrating TMDL implementation with other watershed planning efforts.

10.3.5 Addressing Wildlife Contributions

In some streams for which TMDLs have been developed, water quality modeling indicates that, even after removal of all bacteria sources other than wildlife, the stream will not attain standards under all flow regimes at all times. As is the case for the Middle

River and Upper South River impairments, these streams may not be able to attain standards without some reduction in wildlife load. Virginia and EPA are not proposing the elimination of wildlife to allow for the attainment of water quality standards.

Although previous TMDLs for the Commonwealth have not addressed wildlife reductions in first stage goals, some localities have already introduced wildlife management practices. While managing overpopulations of wildlife remains as an option to local stakeholders, the reduction of wildlife or changing a natural background condition is not the intended goal of a TMDL.

To address this issue, Virginia proposed (during its recent triennial water quality standards review) a new "secondary contact" category for protecting the recreational use in state waters. On March 25, 2003, the Virginia State Water Control Board adopted criteria for "secondary contact recreation" which means "a water-based form of recreation, the practice of which has a low probability for total body immersion or ingestion of waters (examples include but are not limited to wading, boating and fishing)". These new criteria were approved by EPA and became effective in February 2004. Additional information can be found at http://www.deq.state.va.us/wqs/rule.html.

In order for the new criteria to apply to a specific stream segment, the primary contact recreational use must be removed. To remove a designated use, the state must demonstrate 1) that the use is not an existing use, 2) that downstream uses are protected, and 3) that the source of bacterial contamination is natural and uncontrollable by effluent limitations and by implementing cost-effective and reasonable best management practices for nonpoint source control (9 VAC 25-260-10). This, and other, information is collected through a special study called a Use Attainability Analysis (UAA). All site-specific criteria or designated use changes must be adopted as amendments to the water quality standards regulations. Watershed stakeholders and EPA will be able to provide comment during this information process. Additional can be obtained at http://www.deg.state.va.us/wgs/WQS03AUG.pdf.

Based on the above, EPA and Virginia have developed a process to address the wildlife issue. First in this process is the development of a Stage I scenario such as those presented previously in this chapter. The pollutant reductions in the Stage I scenario are targeted only at the controllable, anthropogenic bacteria sources identified in the TMDL, setting aside control strategies for wildlife except for cases of overpopulations. During the implementation of the Stage I scenario, all controllable sources would be reduced to the maximum extent practicable using the iterative approach described in section 6.1 above. VADEQ will re-assess water quality in the stream during and subsequent to the implementation of the Stage I scenario to determine if the water quality standard is attained. This effort will also evaluate if the modeling assumptions were correct. If water quality standards are not being met, a UAA may be initiated to reflect the presence of naturally high bacteria levels due to uncontrollable sources. In some cases, the effort may never have to go to the UAA phase because the water quality standard exceedances attributed to wildlife in the model may have been very small and infrequent and within the margin of error.

11. PUBLIC PARTICIPATION

The development of the Middle River TMDLs was greatly benefited from public participation. Table 7.1 details the public participation throughout the project. The government kickoff meeting took place on October 29, 2002 at the VADCR-Shenandoah Watershed Office with 20 people attending. The purpose of this meeting was to inform the localities of the TMDL development process, and provide data for this study to the contractor.

The first public meeting was held at the Augusta County government offices in Verona on March 5, 2003 to discuss the process for TMDL development, available data, data needs and timeline for the project; 63 people attended. Copies of the presentation materials were available for public distribution. The meeting was public noticed in the *Virginia Register*. There was a 30 day-public comment period and no written comments were received.

A second public meeting was held at the Woodrow Wilson Rehabilitation Center in Fishersville on October 7, 2003 to discuss the fecal bacteria impairments (specifically, the source assessment input and hydrologic calibration); 33 people attended. Copies of the presentation materials were available for public distribution. The meeting was public noticed in the *Virginia Register*. There was a 30 day-public comment period and no written comments were received.

The third public meeting, held at the Augusta County Government Center in Verona, Virginia on December 3, 2003, focused specifically on the benthic impairments. This meeting focused on the TMDL development for the benthic impairments; 15 people attended. Discussion topics included stressor identification and reference watershed selection. The meeting was public noticed in the *Virginia Register*. There was a 30 day-public comment period and no written comments were received.

The fourth public meeting was held January 29, 2004. This was the final meeting for the General Standard (benthic) TMDLs in the Moffett Creek and Upper Middle River watersheds; 18 people attended. Sediment modeling results and allocations were

presented at the fourth public meeting. The meeting was public noticed in the *Virginia Register*. Following the meeting, there was a 30 day-public comment period.

The fifth public meeting was held on March 25, 2004 to present the modeling results and allocations. This was the final meeting for the fecal bacteria TMDLs and the General Standard (benthic) TMDL in Christians Creek; 21 people attended. The meeting was public noticed in the *Virginia Register*. Following the meeting, there was a 30 day-public comment period and two sets of comments were received. VADEQ has responded to both sets of comments.

In addition to the public meetings, there were meetings held with farmers and the Headwaters Soil & Water Conservation District. These meetings were to educate the stakeholders on the TMDL process, to obtain data pertaining to the area, and to encourage public participation.

Date	Location	Attendance ¹	Format
3/5/03	Augusta County Government Center Board Room, Verona Virginia	63	Open to public at large
10/7/03	Woodrow Wilson Rehabilitation Center, Fishersville Virginia	33	Open to public at large
12/3/03	Augusta County Government Center Board Room, Verona Virginia	15	Open to public at large
1/29/04	Augusta County Government Center Board Room, Verona Virginia	18	Open to public at large
3/25/04	Augusta County Government Center Board Room, Verona Virginia	21	Open to public at large

Table 11.1Public participation during TMDL development for the Middle River
watershed.

¹The number of attendants is estimated from sign up sheets provided at each meeting. These numbers are known to underestimate the actual attendance.

Public participation will continue to be critical during the implementation plan (IP) development process. The IP development will depend on the formation of a stakeholders' committee and open public meetings. Public participation is critical to

promote reasonable assurances that the implementation activities will occur. A stakeholders' committee will have the expressed purpose of formulating the TMDL implementation plan. The committee will consist of, but not be limited to, representatives from the Department of Conservation and Recreation, Department of Environmental Quality, Department of Health, local agricultural community, local urban community, and local governments. This committee will have responsibility for identifying corrective actions that are founded in practicality, establish a time line to insure expeditious implementation, and set measurable goals and milestones for attaining water quality standards.

REFERENCES

- American Veterinary Medical Association Center for Information Management. 1997 U.S. Pet Ownership and Demographics Sourcebook.
- ASAE Standards, 45th Edition. 1998. D384.1 DEC93. Manure Production and Characteristics. St. Joseph, Mich.: ASAE.
- Bidrowski, T. 2003, Virginia Department of Game and Inland Fisheries. Personal telecommunication, 01/29/03.
- BSE. 2003. Benthic TMDL for Stroubles Creek in Montgomery County, Virginia. Department of Biological Systems Engineering, Virginia Tech.
- Chow, V.T. 1959. Open Channel Hydraulics. McGraw-Hill Book Company. NY.
- Collins, E.R., T.M. Younos, B.B. Ross, J.M. Swisher, R.F. Shank, and K.G. Wooden. 1996. Dairy Loafing Lot Rotational Management System Non-Point Source Pollution Assessment and Demonstration. VADCR-DSWC. Agreement No. C199-319-95-10.
- Cowan, W.L. 1956. Estimating hydraulic roughness coefficients. Agricultural Engineering, 37(7), pp. 473-475.
- England, C.B., 1970. Land Capability: A Hydrologic Response Unit in Agricultural Watersheds, Agricultural Research Service, USDA, ARS 41-172.
- EPA. 1991. Guidance for Water-Quality-Based Decisions: The TMDL Process. EPAA440-4-91-001.
- EPA. 1998. EPA Website. Total Maximum Daily Load (TMDL) Program. Draft TMDL Program Implementation Strategy.
 <u>http://www.epa.gov/OWOW/tmdl/strategy/glossary.html</u> 02/12/98.
- EPA. 1998. Total Maximum Daily Load (TMDL) Program. Draft TMDL Program Implementation Strategy. http://www.epa.gov/OWOW/tmdl/strategy/glossary.html 02/12/98.

- EPA. 1999. Guidance for Water Quality-Based Decisions: The TMDL Process. http://www.epa.gov/OWOW/tmdl/decisions/dec1c.html
- EPA. 2000. Stressor Identification Guidance Document. U.S. Environmental Protection Agency, Office of Water. Washington, D.C. December 2000. EPA 822-B-00-025.
- EPA. 2003. Total Maximum Daily Load (TMDL) Program and Individual Water Quality-Based Effluent Limitations. 40 CFR 130.7 (c)(1).
- EPA. 2003. "Toxicity Test Report: Virginia TMDL Study 7, Moffett Creek, Lewis Creek, and Middle River", Freshwater Biology Team, Wheeling Office.
- Evans, Barry M., Scott A. Sheeder, Kenneth J. Corradini, and Will w. Brown. 2001.
 AVGWLF version 3.2 Users Guide. Environmental Resources Research Institute,
 Pennsylvania State University and Pennsylvania Department of Environmental
 Protection, Bureau of Watershed Conservation.
- Fire Effects Information System. 1999. http://www.huntana.com/feis/animals/mammals.
- Geldreich, E. E. 1978. Bacterial Populations and Indictor Concepts in Feces, Sewage, Stormwater, and Solid Wastes. In Indicators of Viruses in Water and Food, ed. G. Berg. Ann Arbor, Mich.: Ann Arbor Science Publishers, Inc.
- Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold. NY.
- Haith, Douglas A., Ross Mandel, and Ray Shyan Wu. 1992. GWLF. Generalized Watershed Loading Functions, version 2.0 User's Manual. Department of Agricultural and Biological Engineering, Cornell University, Ithaca, New York.
- Kleene, J. Wesley. 1995, Watershed Nonpoint Source Management System: A Geographic Information System Approach, Ph.D. Dissertation, Virginia Polytechnic Institute and University.

- Li, Elizabeth Ann. 1975. A Model to Define Hydrologic Response Units Based on Characteristics of the Soil Vegetative Complex Within a Drainage Basin. MS thesis, Virginia Polytechnic Institute and State University.
- Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Env. Mgmt. 19:1897.
- MapTech. 2002. Modeling Cattle Stream Access. Submitted to: VADCR, in cooperation with Biological Systems Engineering Department at Virginia Tech.
- McClave, James T., P. George Benson, T. Sincich. 1998. A First Course In Business Statistics 7th Edition.
- Minitab, Inc. 1995. MINITAB Reference Manual Release 10 Xtra for Windows and Macintosh.
- Norman, G. W. and N. W. Lafon. 1998. 1997-1998 Virginia Wild Turkey Status Report. Department of Game and Inland Fisheries
- Rose, R.K., Cranford, J.A. 1987. Handbook of Virginia Mammals. Final Report, Project No. 567460. VA Dept. Game & Inland Fisheries, Richmond, VA: 121.
- SCS (Soil Conservation Service) 1997. Soil survey of Augusta County, Virginia. Richmond: USDA-SCS.
- SCS (Soil Conservation Service) 1982b. Soil survey of Clarke County, Virginia. Richmond: USDA-SCS.
- SCS (Soil Conservation Service) 1987. Soil survey of Frederick County, Virginia. Richmond: USDA-SCS.
- SCS. 1986. Urban Hydrology for Small Watersheds, USDA Soil Conservation Service, Engineering Division. Technical Release 55.

- SERCC. 2003. Southeast Regional Climate Center. <u>http://water.dnr.state.sc.us/climate/sercc/</u>
- Shanholtz et al. 1988. Agricultural Pollution Potential Database for Headwaters Soil and Water Conservation District. Interim Report VirGIS 88-10, Department Conservation and Historic Resources, Division Soil and Water Conservation, Richmond, Virginia.
- Shanholtz et al. 1988. Agricultural Pollution Potential Database for Lord Fairfax Soil and Water Conservation District. Interim Report VirGIS 88-11, Department of Conservation and Historic Resources, Division of Soil and Water Conservation, Richmond, Virginia.
- State Water Control Board (1997). Water quality standard 9VAC25-260-20. General Standard.
- Tetra Tech. 2002a. Total maximum daily load (TMDL) development for Blacks Run and Cooks Creek. Prepared for Virginia Department of Environmental Quality and Department of Conservation and Recreation, Richmond, Virginia. Draft – March 2002. Available at: <u>www.deq.state.va.us/tmdl/apptmdls/shenrvrcooksbd2.pdf</u>
- USCB. 1990. 1990 Census. United States Census Bureau. Washington D.C.
- USCB. 2000. 2000 Census. United States Census Bureau. Washington D.C.
- USDA NASS. 1997. http://www.nass.usda.gov/census/census97/rankings/ac97s-3r.pdf
- USDI, Bureau of Land Management. 1998. Riparian area management: process for assessing proper functioning conditions. Technical Reference 1737-9, National Applied Science Center, Denver, CO.
- VADCR/DSWC. VirGIS Soils database; Department of Conservation and Recreation, Richmond, Virginia.
- VADEQ. 1996. 303(d) TMDL Priority List and Report .
- VADEQ. 1998. 303(d) Report on Impaired Waters.

VADEQ. 2002. 303(d) Total Maximum Daily Load Priority List and Report (DRAFT).

- VADEQ. 2003. Guidance Memo No. 03-XXXXa Bacteria TMDLs: Model Calibration and Verification. 01/23/03.
- VADEQ/VADCR. 2000. Fecal Coliform TMDL Development for Lower Blackwater River, Virginia. Prepared by MapTech Inc., Blacksburg, VA for Virginia Department of Environmental Quality and Virginia Department of Conservation and Recreation, Richmond, VA.
- VADGIF. 1999. <u>http://www.dgif.state.va.us</u> The Virginia Fish and Wildlife Information Service
- VASS. 2001. Virginia Agricultural Statistics Bulletin & Resource Directory. Number 77.Virginia Agricultural Statistics Service, Richmond, Virginia.
- VASS. 2003. Virginia Agricultural Statistics Bulletin 2000. Virginia Agricultural Statistics Service. Richmond, VA
- VASS. 2000. Virginia Agricultural Statistics Bulletin 2000. Virginia Agricultural Statistics Service. Richmond, VA
- VASS. 1999. Virginia Agricultural Statistics Bulletin 1998. Virginia Agricultural Statistics Service. Richmond, VA
- VASS. 1995. Virginia Agricultural Statistics Bulletin 1994. Virginia Agricultural Statistic Service. Richmond, VA.
- VDH. 1997. Biosolids Use Regulations 12 VAC 5-585. Virginia Department of Health. Richmond, VA.

Virginia's State Water Control Board. 2003. Water Quality Standards 9 VAC 25-260-5.

Weiskel, P. A., B. L. Howes, and G. R. Heufelder. 1996. Coliform contamination of a coastal embayment: sources and transport pathways. Environ. Sci. Technol. 30:1872-1881.

- Wischmeier, W. H. and Smith, D.D. 1978. Predicting Rainfall Erosion Losses A Guide to Conservation Planning. U.S. Department of Agriculture, Agriculture Handbook No. 537.
- Yagow, G., V.O. Shanholtz, R. Seale, R. Stephens, D. Johnson, C. Lunsford. 1999.Preliminary fecal coliform assessment in the Blackwater River watershed. ASAEPaper No. 99-2185, ASAE, St. Joseph, MI.
- Yagow, G., S. Mostaghimi, and T.A. Dillaha. 2002. GWLF model calibration for statewide NPS assessment. Virginia NPS pollutant load assessment methodology for 2002 and 2004 statewide NPS pollutant assessments. January 1 - March 31, 2002 Quarterly Report. Submitted to Virginia Department Conservation and Recreation, Division of Soil and Water Conservation, Richmond, Virginia.

GLOSSARY

Note: All entries in italics are taken from EPA (1998).

303(d). A section of the Clean Water Act of 1972 requiring states to identify and list water bodies that do not meet the states' water quality standards.

Allocations. That portion of a receiving water's loading capacity attributed to one of its existing or future pollution sources (nonpoint or point) or to natural background sources. (A wasteload allocation [WLA] is that portion of the loading capacity allocated to an existing or future point source, and a load allocation [LA] is that portion allocated to an existing or future nonpoint source or to natural background levels. Load allocations are best estimates of the loading, which can range from reasonably accurate estimates to gross allotments, depending on the availability of data and appropriate techniques for predicting loading.)

Ambient water quality. Natural concentration of water quality constituents prior to mixing of either point or nonpoint source load of contaminants. Reference ambient concentration is used to indicate the concentration of a chemical that will not cause adverse impact on human health.

Anthropogenic. Pertains to the [environmental] influence of human activities.

Antidegradation Policies. Policies that are part of each states water quality standards. These policies are designed to protect water quality and provide a method of assessing activities that might affect the integrity of waterbodies.

Aquatic ecosystem. Complex of biotic and abiotic components of natural waters. The aquatic ecosystem is an ecological unit that includes the physical characteristics (such as flow or velocity and depth), the biological community of the water column and benthos, and the chemical characteristics such as dissolved solids, dissolved oxygen, and nutrients. Both living and nonliving components of the aquatic ecosystem interact and influence the properties and status of each component.

Assimilative capacity. The amount of contaminant load that can be discharged to a specific waterbody without exceeding water quality standards or criteria. Assimilative capacity is used to define the ability of a waterbody to naturally absorb and use a discharged substance without impairing water quality or harming aquatic life.

Background levels. Levels representing the chemical, physical, and biological conditions that would result from natural geomorphological processes such as weathering or dissolution.

Bacteria. Single-celled microorganisms. Bacteria of the coliform group are considered the primary indicators of fecal contamination and are often used to assess water quality.

Bacterial decomposition. Breakdown by oxidation, or decay, of organic matter by heterotrophic bacteria. Bacteria use the organic carbon in organic matter as the energy source for cell synthesis.

Bacterial source tracking (BST). A collection of scientific methods used to track sources of fecal contamination.

Benthic. Refers to material, especially sediment, at the bottom of an aquatic ecosystem. It can be used to describe the organisms that live on, or in, the bottom of a waterbody.

Benthic organisms. Organisms living in, or on, bottom substrates in aquatic ecosystems.

Best management practices (BMPs). Methods, measures, or practices determined to be reasonable and cost-effective means for a landowner to meet certain, generally nonpoint source, pollution control needs. BMPs include structural and nonstructural controls and operation and maintenance procedures.

Bioassessment. Evaluation of the condition of an ecosystem that uses biological surveys and other direct measurements of the resident biota. (2)

Biochemical Oxygen Demand (BOD). Represents the amount of oxygen consumed by bacteria as they break down organic matter in the water.

Biological Integrity. A water body's ability to support and maintain a balanced, integrated adaptive assemblage of organisms with species composition, diversity, and functional organization comparable to that of similar natural, or non-impacted habitat.

Biosolids. Biologically treated solids originating from municipal wastewater treatment plants.

Biometric. (Biological Metric) The study of biological phenomena by measurements and statistics.

Box and whisker plot. A graphical representation of the mean, lower quartile, upper quartile, upper limit, lower limit, and outliers of a data set.

Calibration. The process of adjusting model parameters within physically defensible ranges until the resulting predictions give a best possible good fit to observed data.

Causal analysis. A process in which data and other information are organized and evaluated using quantitative and logical techniques to determine the likely cause of an observed condition. (2)

Causal association. A correlation or other association between measures or observations of two entities or processes which occurs because of an underlying causal relationship. (2)

Causal mechanism. The process by which a cause induces an effect. (2)

Causal relationship. The relationship between a cause and its effect. (2)

Cause. 1. That which produces an effect (a general definition).

2. A stressor or set of stressors that occur at an intensity, duration and frequency of exposure that results in a change in the ecological condition (a SI-specific definition). (2)

Channel. A natural stream that conveys water; a ditch or channel excavated for the flow of water.

Chloride. An atom of chlorine in solution; an ion bearing a single negative charge.

Clean Water Act (CWA). The Clean Water Act (formerly referred to as the Federal Water Pollution Control Act or Federal Water Pollution Control Act Amendments of 1972), Public Law 92-500, as amended by Public Law 96-483 and Public Law 97-117, 33 U.S.C. 1251 et seq. The Clean Water Act (CWA) contains a number of provisions to restore and maintain the quality of the nation's water resources. One of these provisions is Section 303(d), which establishes the TMDL program.

Coefficient of determination. Represents the proportion of the total sample variability around y that is explained by the linear relationship between y and x. (In simple linear regression, it may also be computed as the square of the coefficient of correlation r.) (3)

Concentration. Amount of a substance or material in a given unit volume of solution; usually measured in milligrams per liter (mg/L) or parts per million (ppm).

Concentration-based limit. A limit based on the relative strength of a pollutant in a waste stream, usually expressed in milligrams per liter (mg/L).

Concentration-response model. A quantitative (usually statistical) model of the relationship between the concentration of a chemical to which a population or community of organisms is exposed and the frequency or magnitude of a biological response. (2)

Conductivity. An indirect measure of the presence of dissolved substances within water.

Confluence. The point at which a river and its tributary flow together.

Contamination. The act of polluting or making impure; any indication of chemical, sediment, or biological impurities.

Continuous discharge. A discharge that occurs without interruption throughout the operating hours of a facility, except for infrequent shutdowns for maintenance, process changes, or other similar activities.

Conventional pollutants. As specified under the Clean Water Act, conventional contaminants include suspended solids, coliform bacteria, high biochemical oxygen demand, pH, and oil and grease.

Conveyance. A measure of the of the water carrying capacity of a channel section. It is directly proportional to the discharge in the channel section.

Cost-share program. A program that allocates project funds to pay a percentage of the cost of constructing or implementing a best management practice. The remainder of the costs is paid by the producer(s).

Cross-sectional area. Wet area of a waterbody normal to the longitudinal component of the flow.

Critical condition. The critical condition can be thought of as the "worst case" scenario of environmental conditions in the waterbody in which the loading expressed in the TMDL for the pollutant of concern will continue to meet water quality standards. Critical conditions are the combination of environmental factors (e.g., flow, temperature, etc.) that results in attaining and maintaining the water quality criterion and has an acceptably low frequency of occurrence.

Decay. The gradual decrease in the amount of a given substance in a given system due to various sink processes including chemical and biological transformation, dissipation to other environmental media, or deposition into storage areas.

Decomposition. Metabolic breakdown of organic materials; the formation of by-products of decomposition releases energy and simple organic and inorganic compounds. See also **Respiration**.

Designated uses. Those uses specified in water quality standards for each waterbody or segment whether or not they are being attained.

Deterministic model. A model that does not include built-in variability: same input will always result in the same output.

Dilution. The addition of some quantity of less-concentrated liquid (water) that results in a decrease in the original concentration.

Direct runoff. Water that flows over the ground surface or through the ground directly into streams, rivers, and lakes.

Discharge. Flow of surface water in a stream or canal, or the outflow of groundwater from a flowing artesian well, ditch, or spring. Can also apply to discharge of liquid effluent from a facility or to chemical emissions into the air through designated venting mechanisms.

Discharge Monitoring Report (DMR). Report of effluent characteristics submitted by a municipal or industrial facility that has been granted an NPDES discharge permit.

Discharge permits (under NPDES). A permit issued by the U.S. EPA or a state regulatory agency that sets specific limits on the type and amount of pollutants that a municipality or industry can discharge to a receiving water; it also includes a compliance schedule for achieving those limits. The permit process was established under the National Pollutant Discharge Elimination System, under provisions of the Federal Clean Water Act.

Dispersion. The spreading of chemical or biological constituents, including pollutants, in various directions at varying velocities depending on the differential in-stream flow characteristics.

Dissolved Oxygen (DO). The amount of oxygen in water. DO is a measure of the amount of oxygen available for biochemical activity in a waterbody.

Diurnal. Actions or processes that have a period or a cycle of approximately one tidalday or are completed within a 24-hour period and that recur every 24 hours. Also, the occurrence of an activity/process during the day rather than the night.

DNA. Deoxyribonucleic acid. The genetic material of cells and some viruses.

Domestic wastewater. Also called sanitary wastewater, consists of wastewater discharged from residences and from commercial, institutional, and similar facilities.

Drainage basin. A part of a land area enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into a receiving water. Also referred to as a watershed, river basin, or hydrologic unit.

Dynamic model. A mathematical formulation describing and simulating the physical behavior of a system or a process and its temporal variability.

Dynamic simulation. Modeling of the behavior of physical, chemical, and/or biological phenomena and their variations over time.

Ecoregion. A region defined in part by its shared characteristics. These include meteorological factors, elevation, plant and animal speciation, landscape position, and soils.

Ecosystem. An interactive system that includes the organisms of a natural community association together with their abiotic physical, chemical, and geochemical environment.

Effluent. Municipal sewage or industrial liquid waste (untreated, partially treated, or completely treated) that flows out of a treatment plant, septic system, pipe, etc.

Effluent guidelines. The national effluent guidelines and standards specify the achievable effluent pollutant reduction that is attainable based upon the performance of treatment technologies employed within an industrial category. The National Effluent Guidelines Program was established with a phased approach whereby industry would first be required to meet interim limitations based on best practicable control technology currently available for existing sources (BPT). The second level of effluent limitations to be attained by industry was referred to as best available technology economically achievable (BAT), which was established primarily for the control of toxic pollutants.

Effluent limitation. Restrictions established by a state or EPA on quantities, rates, and concentrations in pollutant discharges.

Empirical model. Use of statistical techniques to discern patterns or relationships underlying observed or measured data for large sample sets. Does not account for physical dynamics of waterbodies.

Endpoint. An endpoint (or indicator/target) is a characteristic of an ecosystem that may be affected by exposure to a stressor. Assessment endpoints and measurement endpoints are two distinct types of endpoints commonly used by resource managers. An assessment endpoint is the formal expression of a valued environmental characteristic and should have societal relevance (an indicator). A measurement endpoint is the expression of an observed or measured response to a stress or disturbance. It is a measurable

environmental characteristic that is related to the valued environmental characteristic chosen as the assessment endpoint. The numeric criteria that are part of traditional water quality standards are good examples of measurement endpoints (targets).

Enhancement. In the context of restoration ecology, any improvement of a structural or functional attribute.

Erosion. The detachment and transport of soil particles by water and wind. Sediment resulting from soil erosion represents the single largest source of nonpoint pollution in the United States.

Eutrophication. The process of enrichment of water bodies by nutrients. Waters receiving excessive nutrients may become eutrophic, are often undesirable for recreation, and may not support normal fish populations.

Evapotranspiration. The combined effects of evaporation and transpiration on the water balance. Evaporation is water loss into the atmosphere from soil and water surfaces. Transpiration is water loss into the atmosphere as part of the life cycle of plants.

Existing use. Use actually attained in the waterbody on or after November 28, 1975, whether or not it is included in the water quality standards (40 CFR 131.3).

Fate of pollutants. Physical, chemical, and biological transformation in the nature and changes of the amount of a pollutant in an environmental system. Transformation processes are pollutant-specific. Because they have comparable kinetics, different formulations for each pollutant are not required.

Fecal Coliform. Indicator organisms (organisms indicating presence of pathogens) associated with the digestive tract.

Feedlot. A confined area for the controlled feeding of animals. Tends to concentrate large amounts of animal waste that cannot be absorbed by the soil and, hence, may be carried to nearby streams or lakes by rainfall runoff.

First-order kinetics. The type of relationship describing a dynamic reaction in which the rate of transformation of a pollutant is proportional to the amount of that pollutant in the environmental system.

Flux. Movement and transport of mass of any water quality constituent over a given period of time. Units of mass flux are mass per unit time.

General Standard. A narrative standard that ensures the general health of state waters. All state waters, including wetlands, shall be free from substances attributable to sewage, industrial waste, or other waste in concentrations, amounts, or combinations which contravene established standards or interfere directly or indirectly with designated uses of such water or which are inimical or harmful to human, animal, plant, or <u>aquatic life</u> (9VAC25-260-20). (4)

Geometric mean. A measure of the central tendency of a data set that minimizes the effects of extreme values.

GIS. Geographic Information System. A system of hardware, software, data, people, organizations and institutional arrangements for collecting, storing, analyzing and disseminating information about areas of the earth. (Dueker and Kjerne, 1989)

Ground water. The supply of fresh water found beneath the earths surface, usually in aquifers, which supply wells and springs. Because ground water is a major source of drinking water, there is growing concern over contamination from leaching agricultural or industrial pollutants and leaking underground storage tanks.

HSPF. Hydrological Simulation Program – Fortran. A computer simulation tool used to mathematically model nonpoint source pollution sources and movement of pollutants in a watershed.

Hydrograph. A graph showing variation of stage (depth) or discharge in a stream over a period of time.

Hydrologic cycle. The circuit of water movement from the atmosphere to the earth and its return to the atmosphere through various stages or processes, such as precipitation, interception, runoff, infiltration, storage, evaporation, and transpiration.

Hydrology. The study of the distribution, properties, and effects of water on the earth's surface, in the soil and underlying rocks, and in the atmosphere.

Hyetograph. Graph of rainfall rate versus time during a storm event.

IMPLND. An impervious land segment in HSPF. It is used to model land covered by impervious materials, such as pavement.

Indicator. A measurable quantity that can be used to evaluate the relationship between pollutant sources and their impact on water quality.

Indicator organism. An organism used to indicate the potential presence of other (usually pathogenic) organisms. Indicator organisms are usually associated with the other organisms, but are usually more easily sampled and measured.

Indirect causation. The induction of effects through a series of cause-effect relationships, so that the impaired resource may not even be exposed to the initial cause. (2)

Indirect effects. Changes in a resource that are due to a series of cause-effect relationships rather than to direct exposure to a contaminant or other stressor. (2)

Infiltration capacity. The capacity of a soil to allow water to infiltrate into or through it during a storm.

In situ. In place; in situ measurements consist of measurements of components or processes in a full-scale system or a field, rather than in a laboratory.

Interflow. Runoff that travels just below the surface of the soil.

Isolate. An inbreeding biological population that is isolated from similar populations by physical or other means.

Leachate. Water that collects contaminants as it trickles through wastes, pesticides, or fertilizers. Leaching can occur in farming areas, feedlots, and landfills and can result in hazardous substances entering surface water, ground water, or soil.

Limits (upper and lower). The lower limit equals the lower quartile -1.5x(upper quartile - lower quartile), and the upper limit equals the upper quartile + 1.5x(upper quartile - lower quartile). Values outside these limits are referred to as outliers.

Loading, Load, Loading rate. The total amount of material (pollutants) entering the system from one or multiple sources; measured as a rate in weight per unit time.

Load allocation (LA). The portion of a receiving waters loading capacity attributed either to one of its existing or future nonpoint sources of pollution or to natural background sources. Load allocations are best estimates of the loading, which can range from reasonably accurate estimates to gross allotments, depending on the availability of data and appropriate techniques for predicting the loading. Wherever possible, natural and nonpoint source loads should be distinguished (40 CFR 130.2(g)).

Loading capacity (LC). The greatest amount of loading a water can receive without violating water quality standards.

Margin of safety (**MOS**). A required component of the TMDL that accounts for the uncertainty about the relationship between the pollutant loads and the quality of the receiving waterbody (CWA Section 303(d)(1)(C)). The MOS is normally incorporated into the conservative assumptions used to develop TMDLs (generally within the calculations or models) and approved by EPA either individually or in state/EPA agreements. If the MOS needs to be larger than that which is allowed through the conservative assumptions, additional MOS can be added as a separate component of the TMDL (in this case, quantitatively, a TMDL = LC = WLA + LA + MOS).

Mass balance. An equation that accounts for the flux of mass going into a defined area and the flux of mass leaving the defined area. The flux in must equal the flux out.

Mass loading. The quantity of a pollutant transported to a waterbody.

Mathematical model. A system of mathematical expressions that describe the spatial and temporal distribution of water quality constituents resulting from fluid transport and the one or more individual processes and interactions within some prototype aquatic ecosystem. A mathematical water quality model is used as the basis for waste load allocation evaluations.

Mean. The sum of the values in a data set divided by the number of values in the data set.

Metrics. Indices or parameters used to measure some aspect or characteristic of a water body's biological integrity. The metric changes in some predictable way with changes in water quality or habitat condition.

MGD. Million gallons per day. A unit of water flow, whether discharge or withdraw.

Mitigation. Actions taken to avoid, reduce, or compensate for the effects of environmental damage. Among the broad spectrum of possible actions are those that restore, enhance, create, or replace damaged ecosystems.

Model. Mathematical representation of hydrologic and water quality processes. Effects of landuse, slope, soil characteristics, and management practices are included.

Monitoring. Periodic or continuous surveillance or testing to determine the level of compliance with statutory requirements and/or pollutant levels in various media or in humans, plants, and animals.

Mood's Median Test. A nonparametric (distribution-free) test used to test the equality of medians from two or more populations.

Multivariate Regression. A functional relationship between 1 dependent variable and multiple independent variables that are often empirically determined from data and are used especially to predict values of one variable when given values of the others.

Narrative criteria. Nonquantitative guidelines that describe the desired water quality goals.

National Pollutant Discharge Elimination System (NPDES). The national program for issuing, modifying, revoking and re-issuing, terminating, monitoring, and enforcing permits, and imposing and enforcing pretreatment requirements, under sections 307, 402, 318, and 405 of the Clean Water Act.

Natural waters. Flowing water within a physical system that has developed without human intervention, in which natural processes continue to take place.

Nitrogen. An essential nutrient to the growth of organisms. Excessive amounts of nitrogen in water can contribute to abnormally high growth of algae, reducing light and oxygen in aquatic ecosystems.

Nonpoint source. Pollution that originates from multiple sources over a relatively large area. Nonpoint sources can be divided into source activities related to either land or water use including failing septic tanks, improper animal-keeping practices, forest practices, and urban and rural runoff.

Numeric targets. A measurable value determined for the pollutant of concern, which, if achieved, is expected to result in the attainment of water quality standards in the listed waterbody.

Numerical model. Model that approximates a solution of governing partial differential equations, which describe a natural process. The approximation uses a numerical discretization of the space and time components of the system or process.

Nutrient. An element or compound essential to life, including carbon, oxygen, nitrogen, phosphorus, and many others: as a pollutant, any element or compound, such as phosphorus or nitrogen, that in excessive amounts contributes to abnormally high growth of algae, reducing light and oxygen in aquatic ecosystems.

Organic matter. The organic fraction that includes plant and animal residue at various stages of decomposition, cells and tissues of soil organisms, and substances synthesized by the soil population. Commonly determined as the amount of organic material contained in a soil or water sample.

Parameter. A numerical descriptive measure of a population. Since it is based on the observations of the population, its value is almost always unknown.

Peak runoff. The highest value of the stage or discharge attained by a flood or storm event; also referred to as flood peak or peak discharge.

PERLND. A pervious land segment in HSPF. It is used to model a particular landuse segment within a subwatershed (e.g. pasture, urban land, or crop land).

Permit. An authorization, license, or equivalent control document issued by EPA or an approved federal, state, or local agency to implement the requirements of an environmental regulation; e.g., a permit to operate a wastewater treatment plant or to operate a facility that may generate harmful emissions.

Permit Compliance System (PCS). Computerized management information system that contains data on NPDES permit-holding facilities. PCS keeps extensive records on more than 65,000 active water-discharge permits on sites located throughout the nation. PCS tracks permit, compliance, and enforcement status of NPDES facilities.

Phased/staged approach. Under the phased approach to TMDL development, load allocations and wasteload allocations are calculated using the best available data and information recognizing the need for additional monitoring data to accurately characterize sources and loadings. The phased approach is typically employed when nonpoint sources dominate. It provides for the implementation of load reduction strategies while collecting additional data.

Phosphorus. An essential nutrient to the growth of organisms. Excessive amounts of phosphorus in water can contribute to abnormally high growth of algae, reducing light and oxygen in aquatic ecosystems.

Point source. Pollutant loads discharged at a specific location from pipes, outfalls, and conveyance channels from either municipal wastewater treatment plants or industrial waste treatment facilities. Point sources can also include pollutant loads contributed by tributaries to the main receiving water stream or river.

Pollutant. Dredged spoil, solid waste, incinerator residue, sewage, garbage, sewage sludge, munitions, chemical wastes, biological materials, radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt, and industrial, municipal, and agricultural waste discharged into water. (CWA section 502(6)).

Pollution. Generally, the presence of matter or energy whose nature, location, or quantity produces undesired environmental effects. Under the Clean Water Act, for example, the term is defined as the man-made or man-induced alteration of the physical, biological, chemical, and radiological integrity of water.

Postaudit. A subsequent examination and verification of a model's predictive performance following implementation of an environmental control program.

Privately owned treatment works. Any device or system that is (a) used to treat wastes from any facility whose operator is not the operator of the treatment works and (b) not a publicly owned treatment works.

Public comment period. The time allowed for the public to express its views and concerns regarding action by EPA or states (e.g., a Federal Register notice of a proposed rule-making, a public notice of a draft permit, or a Notice of Intent to Deny).

Publicly owned treatment works (POTW). Any device or system used in the treatment (including recycling and reclamation) of municipal sewage or industrial wastes of a liquid nature that is owned by a state or municipality. This definition includes sewers, pipes, or other conveyances only if they convey wastewater to a POTW providing treatment.

Quartile. The 25^{th} , 50^{th} , and 75^{th} percentiles of a data set. A percentile (p) of a data set ordered by magnitude is the value that has at most p% of the measurements in the data set below it, and (100-p)% above it. The 50^{th} quartile is also known as the median. The 25^{th} and 75^{th} quartiles are referred to as the lower and upper quartiles, respectively.

Raw sewage. Untreated municipal sewage.

Rapid Bioassessment Protocol (RBP). A suite of measurements based on a quantitative assessment of benthic macroinvertebrates and a qualitative assessment of their habitat. RBP scores are compared to a reference condition or conditions to determine to what degree a water body may be biologically impaired.

Reach. Segment of a stream or river.

Receiving waters. Creeks, streams, rivers, lakes, estuaries, ground-water formations, or other bodies of water into which surface water and/or treated or untreated waste are discharged, either naturally or in man-made systems.

Reference Conditions. The chemical, physical, or biological quality or condition exhibited at either a single site or an aggregation of sites that are representative of non-impaired conditions for a watershed of a certain size, landuse distribution, and other related characteristics. Reference conditions are used to describe reference sites.

Reserve capacity. Pollutant loading rate set aside in determining stream waste load allocation, accounting for uncertainty and future growth.

Residence time. Length of time that a pollutant remains within a section of a stream or river. The residence time is determined by the streamflow and the volume of the river reach or the average stream velocity and the length of the river reach.

Restoration. Return of an ecosystem to a close approximation of its presumed condition prior to disturbance.

Riparian areas. Areas bordering streams, lakes, rivers, and other watercourses. These areas have high water tables and support plants that require saturated soils during all or part of the year. Riparian areas include both wetland and upland zones.

Riparian zone. The border or banks of a stream. Although this term is sometimes used interchangeably with floodplain, the riparian zone is generally regarded as relatively narrow compared to a floodplain. The duration of flooding is generally much shorter, and the timing less predictable, in a riparian zone than in a river floodplain.

Roughness coefficient. A factor in velocity and discharge formulas representing the effects of channel roughness on energy losses in flowing water. Manning's "n" is a commonly used roughness coefficient.

Runoff. That part of precipitation, snowmelt, or irrigation water that runs off the land into streams or other surface water. It can carry pollutants from the air and land into receiving waters.

Seasonal Kendall test. A statistical tool used to test for trends in data, which is unaffected by seasonal cycles.

Sediment. In the context of water quality, soil particles, sand, and minerals dislodged from the land and deposited into aquatic systems as a result of erosion.

Septic system. An on-site system designed to treat and dispose of domestic sewage. A typical septic system consists of a tank that receives waste from a residence or business and a drain field or subsurface absorption system consisting of a series of percolation lines for the disposal of the liquid effluent. Solids (sludge) that remain after decomposition by bacteria in the tank must be pumped out periodically.

Sewer. A channel or conduit that carries wastewater and storm water runoff from the source to a treatment plant or receiving stream. Sanitary sewers carry household, industrial, and commercial waste. Storm sewers carry runoff from rain or snow. Combined sewers handle both.

Simulation. The use of mathematical models to approximate the observed behavior of a natural water system in response to a specific known set of input and forcing conditions. Models that have been validated, or verified, are then used to predict the response of a natural water system to changes in the input or forcing conditions.

Slope. The degree of inclination to the horizontal. Usually expressed as a ratio, such as 1:25 or 1 on 25, indicating one unit vertical rise in 25 units of horizontal distance, or in a decimal fraction (0.04), degrees (2 degrees 18 minutes), or percent (4 percent).

Source. An origination point, area, or entity that releases or emits a stressor. A source can alter the normal intensity, frequency, or duration of a natural attribute, whereby the attribute then becomes a stressor. (2)

Spatial segmentation. A numerical discretization of the spatial component of a system into one or more dimensions; forms the basis for application of numerical simulation models.

Staged Implementation. A process that allows for the evaluation of the adequacy of the TMDL in achieving the water quality standard. As stream monitoring continues to occur, staged or phased implementation allows for water quality improvements to be recorded as they are being achieved. It also provides a measure of quality control, and it helps to ensure that the most cost-effective practices are implemented first.

Stakeholder. Any person with a vested interest in the TMDL development.

Standard. In reference to water quality (e.g. 200 cfu/100 ml geometric mean limit).

Standard deviation. A measure of the variability of a data set. The positive square root of the variance of a set of measurements.

Standard error. The standard deviation of a distribution of a sample statistic, esp. when the mean is used as the statistic.

Statistical significance. An indication that the differences being observed are not due to random error. The p-value indicates the probability that the differences are due to random error (i.e. a low p-value indicates statistical significance).

Steady-state model. Mathematical model of fate and transport that uses constant values of input variables to predict constant values of receiving water quality concentrations. Model variables are treated as not changing with respect to time.

Stepwise regression. All possible one-variable models of the form $E(y) = B_{(i)} + B_1 x_1$ are fit and the "best" x_1 is selected based on the *t*-test for B_1 . Next, two-variable models of the form $E(y) = B_{(i)} + B_1 x_1 + B_2 x_i$ are fit (where x_i is the variable selected in the first step): the "second best" x_i is selected based on the test for B_2 . The process continues in this fashion until no more "important" x's can be added to the model. (3)

Storm runoff. Storm water runoff, snowmelt runoff, and surface runoff and drainage; rainfall that does not evaporate or infiltrate the ground because of impervious land surfaces or a soil infiltration rate lower than rainfall intensity, but instead flows onto adjacent land or into waterbodies or is routed into a drain or sewer system.

Streamflow. Discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" since streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Stream Reach. A straight portion of a stream.

Stream restoration. Various techniques used to replicate the hydrological, morphological, and ecological features that have been lost in a stream because of urbanization, farming, or other disturbance.

Stressor. Any physical, chemical, or biological entity that can induce an adverse response. (2)

Surface area. The area of the surface of a waterbody; best measured by planimetry or the use of a geographic information system.

Surface runoff. Precipitation, snowmelt, or irrigation water in excess of what can infiltrate the soil surface and be stored in small surface depressions; a major transporter of nonpoint source pollutants.

Surface water. All water naturally open to the atmosphere (rivers, lakes, reservoirs, ponds, streams, impoundments, seas, estuaries, etc.) and all springs, wells, or other collectors directly influenced by surface water.

Suspended Solids. Usually fine sediments and organic matter. Suspended solids limit sunlight penetration into the water, inhibit oxygen uptake by fish, and alter aquatic habitat.

Technology-based standards. Effluent limitations applicable to direct and indirect sources that are developed on a category-by-category basis using statutory factors, not including water quality effects.

Timestep. An increment of time in modeling terms. The smallest unit of time used in a mathematical simulation model (e.g. 15-minutes, 1-hour, 1-day).

Topography. The physical features of a geographic surface area including relative elevations and the positions of natural and man-made features.

Total Dissolved Solids (TDS). A measure of the concentration of dissolved inorganic chemicals in water.

Total Maximum Daily Load (TMDL). The sum of the individual wasteload allocations (WLAs) for point sources, load allocations (LAs) for nonpoint sources and natural background, plus a margin of safety (MOS). TMDLs can be expressed in terms of mass per time, toxicity, or other appropriate measures that relate to a state's water quality standard.

TMDL Implementation Plan. A document required by Virginia statute detailing the suite of pollution control measures needed to remediate an impaired stream segment. The plans are also required to include a schedule of actions, costs, and monitoring. Once implemented, the plan should result in the previously impaired water meeting water quality standards and achieving a "fully supporting" use support status.

Transport of pollutants (in water). Transport of pollutants in water involves two main processes: (1) advection, resulting from the flow of water, and (2) dispersion, or transport due to turbulence in the water.

TRC. Total Residual Chlorine. A measure of the effectiveness of chlorinating treated waste water effluent.

Tributary. A lower order-stream compared to a receiving waterbody. "Tributary to" indicates the largest stream into which the reported stream or tributary flows.

Urban Runoff. Surface runoff originating from an urban drainage area including streets, parking lots, and rooftops.

Validation (of a model). Process of determining how well the mathematical model's computer representation describes the actual behavior of the physical processes under investigation. A validated model will have also been tested to ascertain whether it accurately and correctly solves the equations being used to define the system simulation.

Variance. A measure of the variability of a data set. The sum of the squared deviations (observation - mean) divided by (number of observations) - 1.

VADACS. Virginia Department of Agriculture and Consumer Services.

VADCR. Virginia Department of Conservation and Recreation.

VADEQ. Virginia Department of Environmental Quality.

VDH. Virginia Department of Health.

Wasteload allocation (WLA). The portion of a receiving waters' loading capacity that is allocated to one of its existing or future point sources of pollution. WLAs constitute a type of water quality-based effluent limitation (40 CFR 130.2(h)).

Wastewater. Usually refers to effluent from a sewage treatment plant. See also **Domestic** *wastewater*.

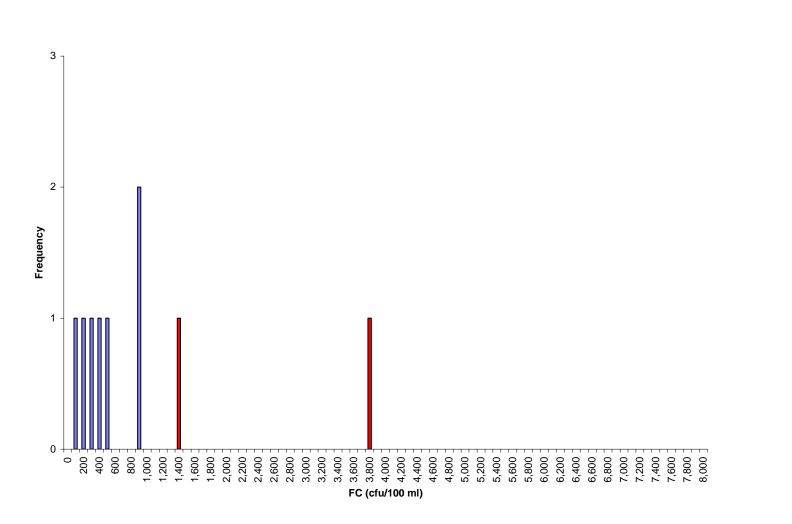
Wastewater treatment. Chemical, biological, and mechanical procedures applied to an industrial or municipal discharge or to any other sources of contaminated water to remove, reduce, or neutralize contaminants.

Water quality. The biological, chemical, and physical conditions of a waterbody. It is a measure of a waterbody's ability to support beneficial uses.

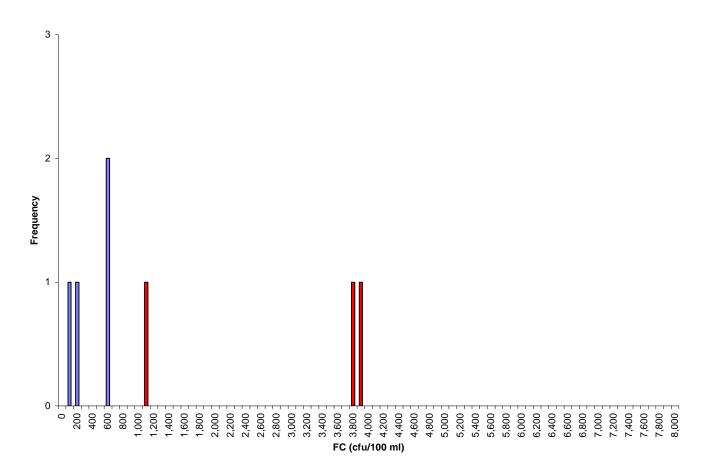
Water quality-based effluent limitations (WQBEL). Effluent limitations applied to dischargers when technology-based limitations alone would cause violations of water quality standards. Usually WQBELs are applied to discharges into small streams.

Water quality-based permit. A permit with an effluent limit more stringent than one based on technology performance. Such limits might be necessary to protect the designated use of receiving waters (e.g., recreation, irrigation, industry, or water supply).

Water quality criteria. Levels of water quality expected to render a body of water suitable for its designated use, composed of numeric and narrative criteria. Numeric criteria are scientifically derived ambient concentrations developed by EPA or states for various pollutants of concern to protect human health and aquatic life. Narrative criteria are statements that describe the desired water quality goal. Criteria are based on specific levels of pollutants that would make the water harmful if used for drinking, swimming, farming, fish production, or industrial processes.


Water quality standard. Law or regulation that consists of the beneficial designated use or uses of a waterbody, the numeric and narrative water quality criteria that are necessary to protect the use or uses of that particular waterbody, and an antidegradation statement.

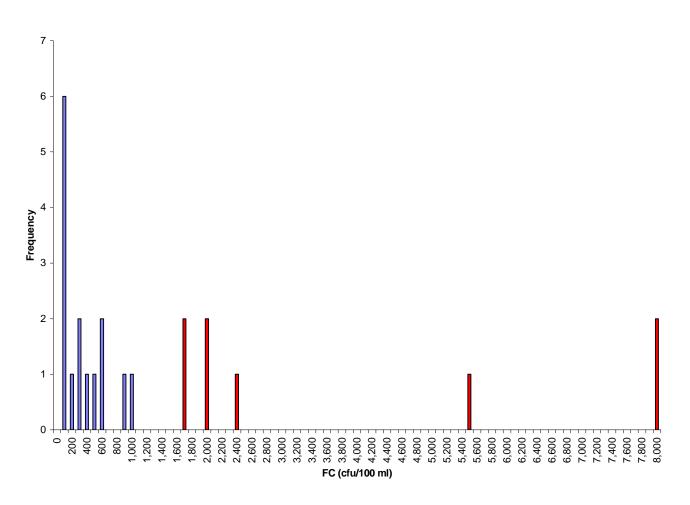
Watershed. A drainage area or basin in which all land and water areas drain or flow toward a central collector such as a stream, river, or lake at a lower elevation.


WQIA. Water Quality Improvement Act.

APPENDIX A

FREQUENCY ANALYSIS OF WATER QUALITY SAMPLING DATA

Figure A.1 Frequency analysis of fecal coliform concentrations at station 1BBAK001.74 in the Middle River impairment for period August 2001 to June 2002.



Frequency analysis of fecal coliform concentrations at station 1BEDN003.67 in the Middle River impairment for period August 2001 to August 2002.

*Red indicates a value which violates the listing standard of 1,000 cfu/100 ml.

TMDL Development

Figure A.2

Figure A.3 Frequency analysis of fecal coliform concentrations at station 1BMDL060.48 in the Middle River impairment for period April 1999 to August 2002.

A-5

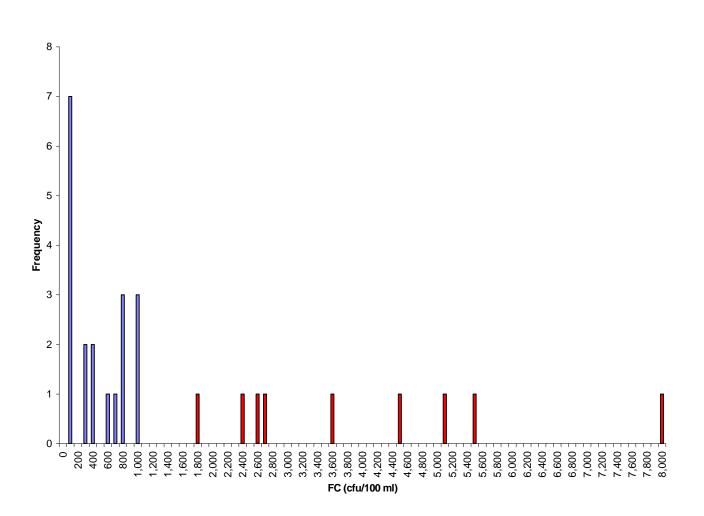
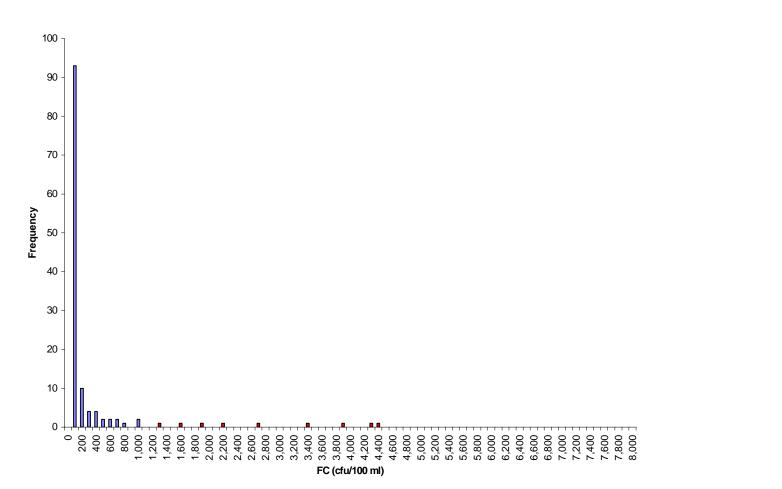
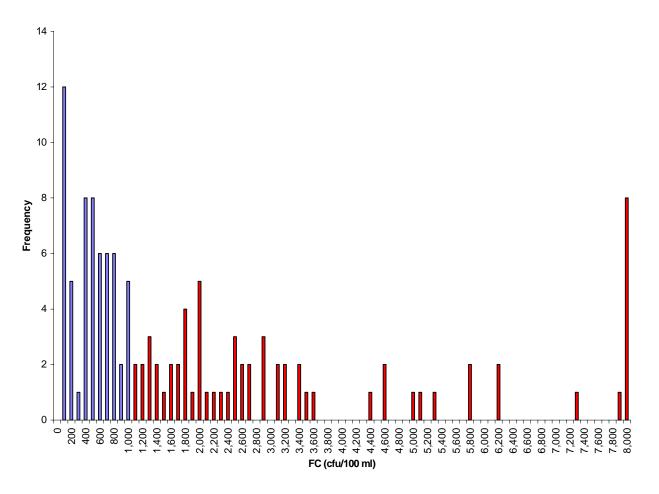
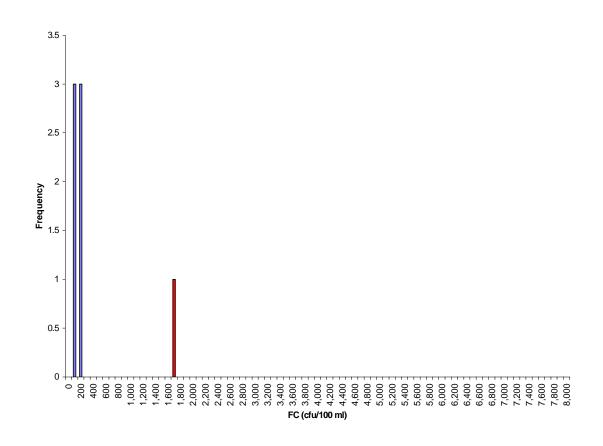


Figure A.4 Frequency analysis of fecal coliform concentrations at station 1BMDL061.07 in the Middle River impairment for period February 1992 to February 1999.



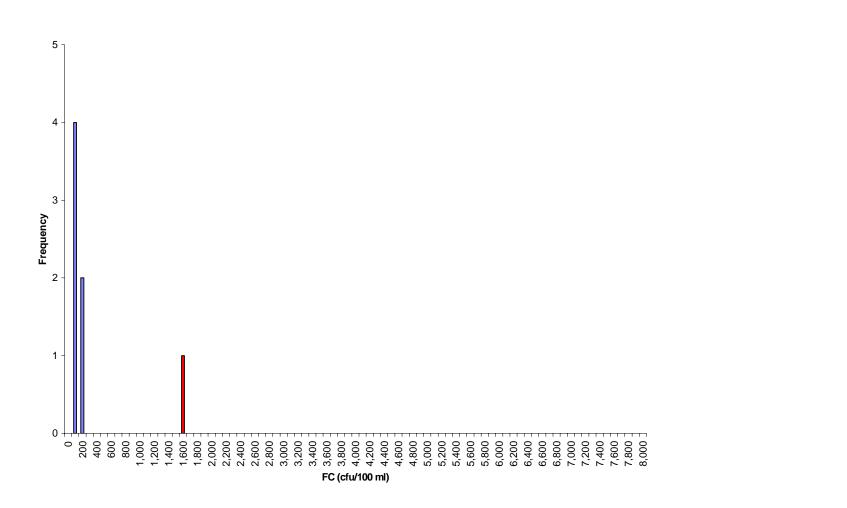

Figure A.5 Frequency analysis of fecal coliform concentrations at station 1BMDL036.08 in the Middle River impairment for period January 1990 to July 2002.

*Red indicates a value which violates the listing standard of 1,000 cfu/100 ml.


TMDL Development

A-6

Figure A.6 Frequency analysis of fecal coliform concentrations at station 1BLEW002.91 in the Middle River impairment for period September 1991 to July 2002.



Frequency analysis of fecal coliform concentrations at station 1BEKR000.25 in the Middle River impairment for period August 2001 to July 2002.

*Red indicates a value which violates the listing standard of 1,000 cfu/100 ml.

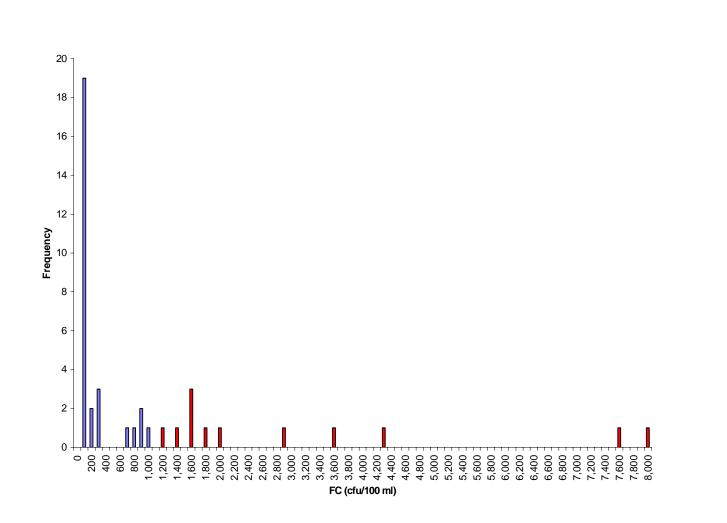

TMDL Development

Figure A.7

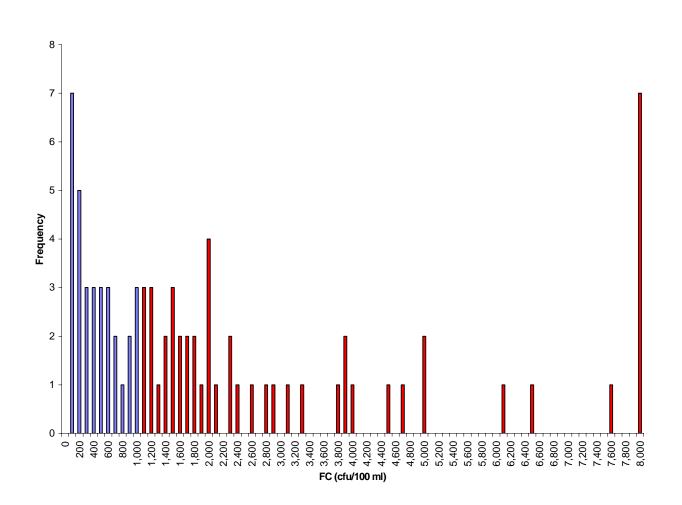
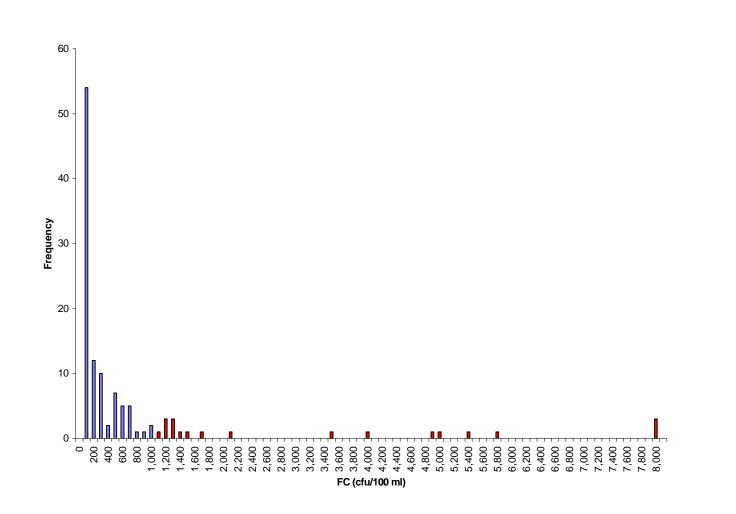


Figure A.8 Frequency analysis of fecal coliform concentrations at station 1BMFT001.43 in the Middle River impairment for the period August 2001 to July 2002.



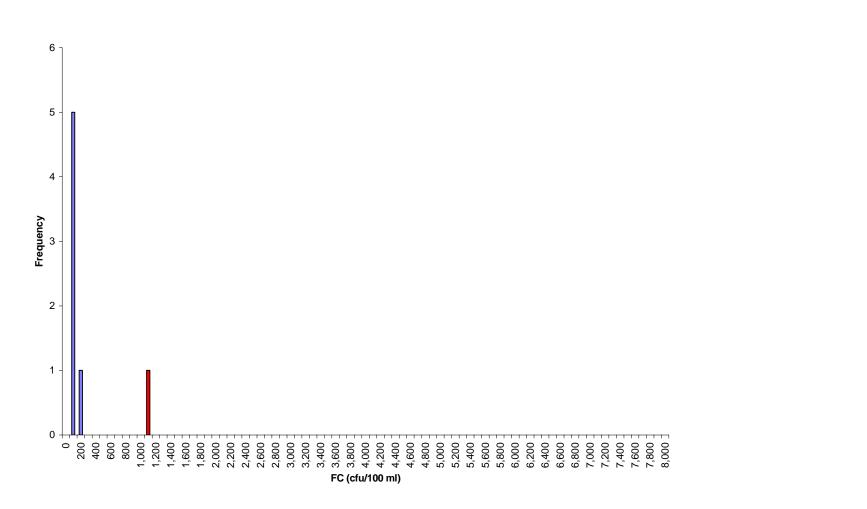
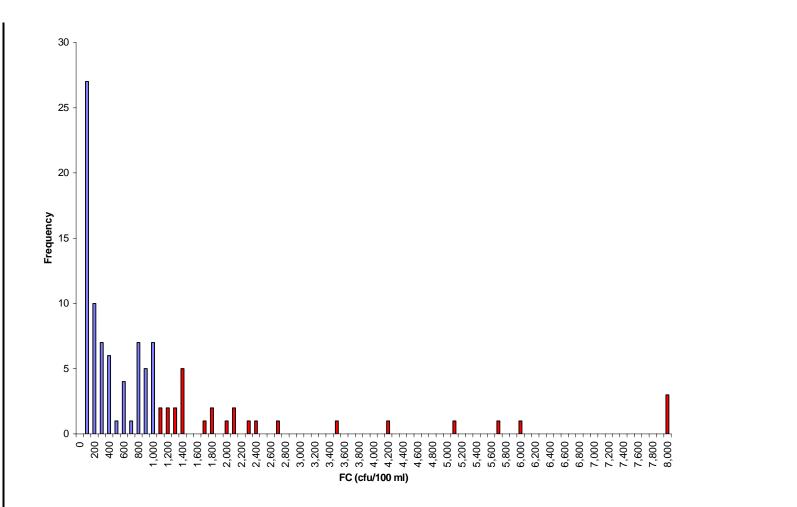

Figure A.9 Frequency analysis of fecal coliform concentrations at station 1BMFT006.20 in the Middle River impairment for the period February 1992 to June 2001.

Figure A.10 Frequency analysis of fecal coliform concentrations at station 1BPCD001.03 in the Middle River impairment for period June 1993 to October 2000.


Figure A.11 Frequency analysis of fecal coliform concentrations at station 1BMDL001.83 in the Middle River impairment for period January 1990 to July 2002.

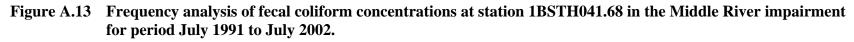
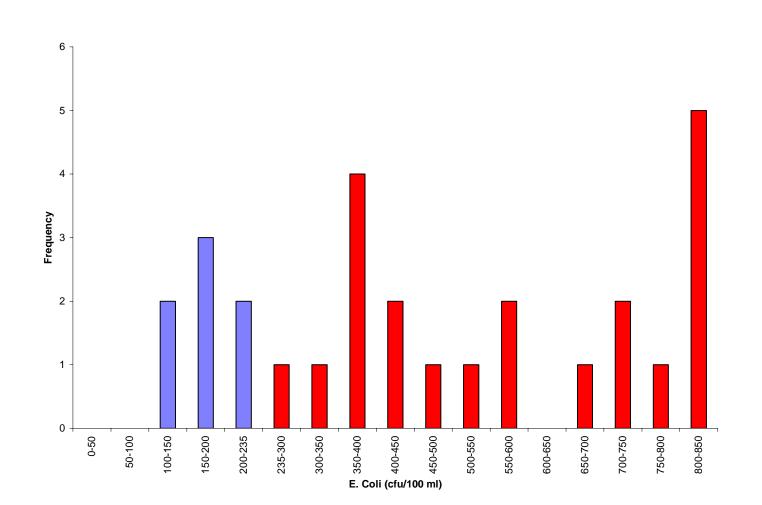


Figure A.12 Frequency analysis of fecal coliform concentrations at station 1BPNE000.04 in the Middle River impairment for period August 2001 to July 2002.

*Red indicates a value which violates the listing standard of 1,000 cfu/100 ml.


TMDL Development

*Red indicates a value which violates the listing standard of 1,000 cfu/100 ml.

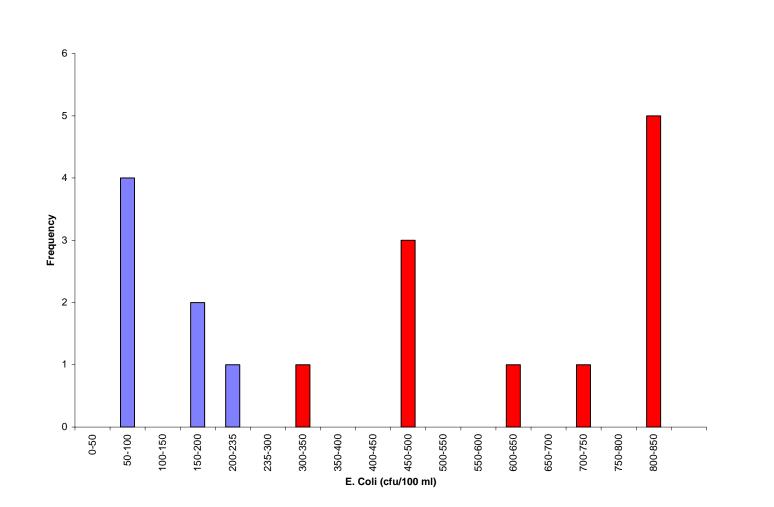

TMDL Development

Figure A.14 Frequency analysis of *E. Coli* concentrations at station 1BLEW002.91 in the Middle River impairment for period January 2000 to July 2002.

*Red indicates a value which violates the listing standard of 1,000 cfu/100 ml.

A-15

Figure A.15 Frequency analysis of *E. coli* concentrations at station 1BMDL060.48 in the Middle River impairment for period January 2000 to August 2002.

APPENDIX B

FECAL COLIFORM LOADS IN EXISTING CONDITIONS

Opper whome Kiver impartment (Subsheus 1-10).							
	Commercial	Cropland	Farmstead	Improved Pasture	Livestock Access		
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)		
January	1.74E+08	4.31E+10	3.18E+09	1.26E+10	1.13E+10		
February	1.74E+08	5.05E+10	3.11E+09	1.43E+10	1.17E+10		
March	1.74E+08	4.78E+11	2.97E+09	1.64E+10	1.46E+10		
April	1.74E+08	4.78E+11	2.90E+09	1.71E+10	1.79E+10		
May	1.74E+08	4.77E+11	2.83E+09	1.63E+10	1.79E+10		
June	1.74E+08	1.58E+09	2.76E+09	2.80E+10	2.09E+10		
July	1.74E+08	1.57E+09	2.63E+09	2.84E+10	2.09E+10		
August	1.74E+08	1.57E+09	2.63E+09	2.84E+10	2.09E+10		
September	1.74E+08	1.42E+11	2.63E+09	1.75E+10	1.79E+10		
October	1.74E+08	4.77E+11	2.56E+09	1.73E+10	1.46E+10		
November	1.74E+08	4.77E+11	2.63E+09	1.56E+10	1.40E+10		
December	1.74E+08	4.31E+10	2.90E+09	1.39E+10	1.13E+10		

Table B.1Current conditions (2003) of land applied fecal coliform load for the
Upper Middle River impairment (Subsheds 1-10).

Table B.1Current conditions (2003) of land applied fecal coliform load for the
Upper Middle River impairment (Subsheds 1-10) (Continued).

	11	I (
	Livestock	Residential	Unimproved	Water	Woodland
	Operation		Pasture		
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)
January	4.63E+09	2.72E+10	1.29E+10	6.95E+03	1.25E+09
February	4.63E+09	2.66E+10	1.46E+10	6.95E+03	1.25E+09
March	4.63E+09	2.55E+10	1.67E+10	6.95E+03	1.25E+09
April	4.63E+09	2.49E+10	1.73E+10	6.95E+03	1.25E+09
May	4.63E+09	2.43E+10	1.65E+10	6.95E+03	1.25E+09
June	4.63E+09	2.37E+10	1.66E+10	6.95E+03	1.25E+09
July	4.63E+09	2.26E+10	1.70E+10	6.95E+03	1.25E+09
August	4.63E+09	2.26E+10	1.70E+10	6.95E+03	1.25E+09
September	4.63E+09	2.26E+10	1.77E+10	6.95E+03	1.25E+09
October	4.63E+09	2.20E+10	1.76E+10	6.95E+03	1.25E+09
November	4.63E+09	2.26E+10	1.58E+10	6.95E+03	1.25E+09
December	4.63E+09	2.49E+10	1.42E+10	6.95E+03	1.25E+09

	Jennings Branch watersneu (non-imparteu) (Subsneus 11-12).						
	Commercial	Cropland	Farmstead	Improved Pasture	Livestock Access		
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)		
January	8.09E+07	2.56E+08	7.72E+08	1.31E+09	1.58E+09		
February	8.09E+07	6.22E+08	7.56E+08	1.82E+09	1.62E+09		
March	8.09E+07	1.97E+09	7.23E+08	3.15E+09	1.74E+09		
April	8.09E+07	1.67E+09	7.06E+08	2.84E+09	1.90E+09		
May	8.09E+07	5.99E+08	6.90E+08	1.77E+09	1.90E+09		
June	8.09E+07	6.10E+08	6.74E+08	1.77E+09	2.01E+09		
July	8.09E+07	5.99E+08	6.41E+08	1.75E+09	2.01E+09		
August	8.09E+07	5.99E+08	6.41E+08	1.75E+09	2.01E+09		
September	8.09E+07	9.64E+08	6.41E+08	2.13E+09	1.90E+09		
October	8.09E+07	9.42E+08	6.24E+08	2.13E+09	1.74E+09		
November	8.09E+07	9.64E+08	6.41E+08	2.00E+09	1.68E+09		
December	8.09E+07	2.56E+08	7.06E+08	1.31E+09	1.58E+09		

Table B.2Current conditions (2003) of land applied fecal coliform load for the
Jennings Branch watershed (non-impaired) (Subsheds 11-12).

Table B.2Current conditions (2003) of land applied fecal coliform load for the
Jennings Branch watershed (non-impaired) (Subsheds 11-12)
(Continued).

	Livestock	Residential	Unimproved Pasture	Water	Woodland
	Operation (cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)
January	5.45E+07	2.62E+09	1.32E+09	9.72E+02	2.58E+08
February	5.45E+07	2.57E+09	1.83E+09	9.72E+02	2.58E+08
March	5.45E+07	2.48E+09	3.17E+09	9.72E+02	2.58E+08
April	5.45E+07	2.43E+09	2.85E+09	9.72E+02	2.58E+08
May	5.45E+07	2.38E+09	1.78E+09	9.72E+02	2.58E+08
June	5.45E+07	2.33E+09	1.78E+09	9.72E+02	2.58E+08
July	5.45E+07	2.23E+09	1.77E+09	9.72E+02	2.58E+08
August	5.45E+07	2.23E+09	1.77E+09	9.72E+02	2.58E+08
September	5.45E+07	2.23E+09	2.15E+09	9.72E+02	2.58E+08
October	5.45E+07	2.19E+09	2.14E+09	9.72E+02	2.58E+08
November	5.45E+07	2.23E+09	2.02E+09	9.72E+02	2.58E+08
December	5.45E+07	2.43E+09	1.32E+09	9.72E+02	2.58E+08

	Monett Creek impairment (Subsides 13-17).						
	Commercial	Cropland	Farmstead	Improved Pasture	Livestock Access		
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)		
January	9.54E+06	2.74E+10	2.38E+09	4.78E+09	3.30E+09		
February	9.54E+06	3.29E+10	2.32E+09	6.00E+09	3.34E+09		
March	9.54E+06	3.10E+11	2.20E+09	9.99E+09	4.37E+09		
April	9.54E+06	3.09E+11	2.14E+09	9.32E+09	5.43E+09		
May	9.54E+06	3.06E+11	2.08E+09	6.33E+09	5.43E+09		
June	9.54E+06	1.58E+09	2.02E+09	1.01E+10	6.46E+09		
July	9.54E+06	1.54E+09	1.91E+09	1.01E+10	6.46E+09		
August	9.54E+06	1.54E+09	1.91E+09	1.01E+10	6.46E+09		
September	9.54E+06	9.21E+10	1.91E+09	7.60E+09	5.43E+09		
October	9.54E+06	3.07E+11	1.85E+09	7.59E+09	4.37E+09		
November	9.54E+06	3.07E+11	1.91E+09	7.36E+09	4.31E+09		
December	9.54E+06	2.74E+10	2.14E+09	5.12E+09	3.30E+09		

Table B.3	Current conditions (2003) of land applied fecal coliform load for the
	Moffett Creek impairment (Subsheds 13-17).

Table B.3Current conditions (2003) of land applied fecal coliform load for the
Moffett Creek impairment (Subsheds 13-17) (Continued).

	Wonett Creek impairment (Subsides 13-17) (Continued).						
	Livestock Operation	Residential	Unimproved Pasture	Water	Woodland		
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)		
January	8.54E+07	1.05E+10	4.83E+09	6.57E+02	4.92E+08		
February	8.54E+07	1.03E+10	6.06E+09	6.57E+02	4.92E+08		
March	8.54E+07	9.85E+09	1.00E+10	6.57E+02	4.92E+08		
April	8.54E+07	9.62E+09	9.37E+09	6.57E+02	4.92E+08		
May	8.54E+07	9.39E+09	6.39E+09	6.57E+02	4.92E+08		
June	8.54E+07	9.16E+09	6.41E+09	6.57E+02	4.92E+08		
July	8.54E+07	8.71E+09	6.48E+09	6.57E+02	4.92E+08		
August	8.54E+07	8.71E+09	6.48E+09	6.57E+02	4.92E+08		
September	8.54E+07	8.71E+09	7.65E+09	6.57E+02	4.92E+08		
October	8.54E+07	8.48E+09	7.64E+09	6.57E+02	4.92E+08		
November	8.54E+07	8.71E+09	7.41E+09	6.57E+02	4.92E+08		
December	8.54E+07	9.62E+09	5.18E+09	6.57E+02	4.92E+08		

	Lewis creek inpartment (Subsidus 10-25).						
	Commercial	Cropland	Farmstead	Improved Pasture	Livestock Access		
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)		
January	2.13E+08	2.35E+11	1.39E+09	5.35E+09	6.54E+09		
February	2.13E+08	2.75E+11	1.37E+09	5.69E+09	6.56E+09		
March	2.13E+08	2.66E+12	1.35E+09	6.84E+09	7.75E+09		
April	2.13E+08	2.66E+12	1.34E+09	6.87E+09	8.93E+09		
May	2.13E+08	2.66E+12	1.33E+09	6.21E+09	8.93E+09		
June	2.13E+08	1.09E+09	1.32E+09	1.01E+10	1.01E+10		
July	2.13E+08	1.08E+09	1.29E+09	1.02E+10	1.01E+10		
August	2.13E+08	1.08E+09	1.29E+09	1.02E+10	1.01E+10		
September	2.13E+08	7.83E+11	1.29E+09	6.74E+09	8.93E+09		
October	2.13E+08	2.66E+12	1.28E+09	6.76E+09	7.75E+09		
November	2.13E+08	2.66E+12	1.29E+09	6.55E+09	7.73E+09		
December	2.13E+08	2.35E+11	1.34E+09	5.77E+09	6.54E+09		

Table B.4Current conditions (2003) of land applied fecal coliform load for the
Lewis Creek impairment (Subsheds 18-25).

Table B.4Current conditions (2003) of land applied fecal coliform load for the
Lewis Creek impairment (Subsheds 18-25) (Continued).

	Etwis Creek impairment (Subsiteds 10-25) (Continued).						
	Livestock	Residential	Unimproved	Water	Woodland		
	Operation (cfu/ac*day)	(cfu/ac*day)	Pasture (cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)		
January	5.33E+06	8.84E+09	2.11E+09	6.50E+02	8.93E+08		
February	5.33E+06	8.74E+09	2.13E+09	6.50E+02	8.93E+08		
March	5.33E+06	8.54E+09	2.19E+09	6.50E+02	8.93E+08		
April	5.33E+06	8.44E+09	2.33E+09	6.50E+02	8.93E+08		
May	5.33E+06	8.34E+09	2.42E+09	6.50E+02	8.93E+08		
June	5.33E+06	8.24E+09	2.43E+09	6.50E+02	8.93E+08		
July	5.33E+06	8.04E+09	2.49E+09	6.50E+02	8.93E+08		
August	5.33E+06	8.04E+09	2.49E+09	6.50E+02	8.93E+08		
September	5.33E+06	8.04E+09	2.55E+09	6.50E+02	8.93E+08		
October	5.33E+06	7.94E+09	2.57E+09	6.50E+02	8.93E+08		
November	5.33E+06	8.04E+09	2.45E+09	6.50E+02	8.93E+08		
December	5.33E+06	8.44E+09	2.33E+09	6.50E+02	8.93E+08		

	Windule River watersned (non-imparted) (Subsneds 20-32).						
	Commercial	Cropland	Farmstead	Improved Pasture	Livestock Access		
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)		
January	2.03E+07	2.45E+10	1.39E+09	5.95E+09	6.51E+09		
February	2.03E+07	2.94E+10	1.37E+09	7.30E+09	6.63E+09		
March	2.03E+07	2.71E+11	1.31E+09	1.11E+10	7.86E+09		
April	2.03E+07	2.70E+11	1.29E+09	1.04E+10	9.19E+09		
May	2.03E+07	2.67E+11	1.26E+09	7.54E+09	9.19E+09		
June	2.03E+07	2.09E+09	1.23E+09	1.03E+10	1.04E+10		
July	2.03E+07	2.06E+09	1.18E+09	1.03E+10	1.04E+10		
August	2.03E+07	2.06E+09	1.18E+09	1.03E+10	1.04E+10		
September	2.03E+07	8.10E+10	1.18E+09	8.73E+09	9.19E+09		
October	2.03E+07	2.68E+11	1.15E+09	8.74E+09	7.86E+09		
November	2.03E+07	2.68E+11	1.18E+09	8.37E+09	7.69E+09		
December	2.03E+07	2.45E+10	1.29E+09	6.25E+09	6.51E+09		

Table B.5Current conditions (2003) of land applied fecal coliform load for the
Middle River watershed (non-impaired) (Subsheds 26-32).

Table B.5Current conditions (2003) of land applied fecal coliform load for the
Middle River watershed (non-impaired) (Subsheds 26-32)
(Continued).

	Livestock	Residential	Unimproved	Water	Woodland
	Operation	Kesiuentiai	Pasture	water	w ooulallu
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)
January	5.33E+08	1.77E+10	4.13E+09	1.08E+03	1.25E+09
February	5.33E+08	1.73E+10	5.35E+09	1.08E+03	1.25E+09
March	5.33E+08	1.65E+10	8.73E+09	1.08E+03	1.25E+09
April	5.33E+08	1.61E+10	8.05E+09	1.08E+03	1.25E+09
May	5.33E+08	1.57E+10	5.43E+09	1.08E+03	1.25E+09
June	5.33E+08	1.53E+10	5.43E+09	1.08E+03	1.25E+09
July	5.33E+08	1.45E+10	5.45E+09	1.08E+03	1.25E+09
August	5.33E+08	1.45E+10	5.45E+09	1.08E+03	1.25E+09
September	5.33E+08	1.45E+10	6.43E+09	1.08E+03	1.25E+09
October	5.33E+08	1.41E+10	6.43E+09	1.08E+03	1.25E+09
November	5.33E+08	1.45E+10	6.12E+09	1.08E+03	1.25E+09
December	5.33E+08	1.61E+10	4.28E+09	1.08E+03	1.25E+09

	Tolecat Draft inpanment (Subsheu 55).							
	Cropland	Farmstead	Improved Pasture	Livestock Access	Livestock Operation			
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)			
January	4.69E+09	4.15E+08	1.52E+09	1.80E+09	1.44E+07			
February	5.88E+09	4.05E+08	2.09E+09	1.86E+09	1.44E+07			
March	5.33E+10	3.84E+08	3.71E+09	2.39E+09	1.44E+07			
April	5.30E+10	3.74E+08	3.41E+09	2.94E+09	1.44E+07			
May	5.17E+10	3.64E+08	2.18E+09	2.94E+09	1.44E+07			
June	5.99E+08	3.54E+08	3.10E+09	3.46E+09	1.44E+07			
July	5.85E+08	3.33E+08	3.12E+09	3.46E+09	1.44E+07			
August	5.85E+08	3.33E+08	3.12E+09	3.46E+09	1.44E+07			
September	1.61E+10	3.33E+08	2.67E+09	2.94E+09	1.44E+07			
October	5.21E+10	3.23E+08	2.66E+09	2.39E+09	1.44E+07			
November	5.21E+10	3.33E+08	2.51E+09	2.30E+09	1.44E+07			
December	4.69E+09	3.74E+08	1.62E+09	1.80E+09	1.44E+07			

Table B.6Current conditions (2003) of land applied fecal coliform load for the
Polecat Draft impairment (Subshed 33).

Table B.6	Current conditions (2003) of land applied fecal coliform load for the
	Polecat Draft impairment (Subshed 33) (Continued).

	Residential	Unimproved	Water	Woodland
		Pasture		
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)
January	2.97E+10	1.38E+09	0.00E+00	9.08E+07
February	2.90E+10	1.95E+09	0.00E+00	9.08E+07
March	2.75E+10	3.56E+09	0.00E + 00	9.08E+07
April	2.68E+10	3.26E+09	0.00E+00	9.08E+07
May	2.60E+10	2.03E+09	0.00E+00	9.08E+07
June	2.53E+10	2.04E+09	0.00E+00	9.08E+07
July	2.38E+10	2.06E+09	0.00E+00	9.08E+07
August	2.38E+10	2.06E+09	0.00E+00	9.08E+07
September	2.38E+10	2.52E+09	0.00E+00	9.08E+07
October	2.31E+10	2.51E+09	0.00E+00	9.08E+07
November	2.38E+10	2.36E+09	0.00E+00	9.08E+07
December	2.68E+10	1.48E+09	0.00E+00	9.08E+07

			•	ubsileus 5 4 -50).	
	Commercial	Cropland	Farmstead	Improved Pasture	Livestock Access
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)
January	7.76E+07	2.52E+10	8.94E+08	1.32E+10	7.74E+09
February	7.76E+07	3.02E+10	8.75E+08	1.47E+10	7.95E+09
March	7.76E+07	2.84E+11	8.38E+08	1.82E+10	1.15E+10
April	7.76E+07	2.84E+11	8.19E+08	1.81E+10	1.51E+10
May	7.76E+07	2.81E+11	8.00E+08	1.61E+10	1.51E+10
June	7.76E+07	1.37E+09	7.81E+08	2.66E+10	1.87E+10
July	7.76E+07	1.34E+09	7.43E+08	2.69E+10	1.87E+10
August	7.76E+07	1.34E+09	7.43E+08	2.69E+10	1.87E+10
September	7.76E+07	8.45E+10	7.43E+08	1.76E+10	1.51E+10
October	7.76E+07	2.82E+11	7.24E+08	1.77E+10	1.15E+10
November	7.76E+07	2.82E+11	7.43E+08	1.66E+10	1.12E+10
December	7.76E+07	2.52E+10	8.19E+08	1.44E+10	7.74E+09

Table B.7	Current conditions (2003) of land applied fecal coliform load for the
	Lower Middle River impairment (Subsheds 34-38).

Table B.7Current conditions (2003) of land applied fecal coliform load for the
Lower Middle River impairment (Subsheds 34-38) (Continued).

	Lower whome Kiver impairment (Subsheus 54-58) (Continued).									
	Livestock	Residential	Unimproved	Water	Woodland					
	Operation (cfu/ac*day)	(cfu/ac*day)	Pasture (cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)					
January	1.46E+07	4.17E+09	7.89E+09	1.23E+03	1.01E+09					
February	1.46E+07	4.09E+09	9.30E+09	1.23E+03	1.01E+09					
March	1.46E+07	3.94E+09	1.26E+10	1.23E+03	1.01E+09					
April	1.46E+07	3.87E+09	1.22E+10	1.23E+03	1.01E+09					
May	1.46E+07	3.79E+09	9.89E+09	1.23E+03	1.01E+09					
June	1.46E+07	3.72E+09	9.89E+09	1.23E+03	1.01E+09					
July	1.46E+07	3.57E+09	1.00E+10	1.23E+03	1.01E+09					
August	1.46E+07	3.57E+09	1.00E+10	1.23E+03	1.01E+09					
September	1.46E+07	3.57E+09	1.11E+10	1.23E+03	1.01E+09					
October	1.46E+07	3.50E+09	1.11E+10	1.23E+03	1.01E+09					
November	1.46E+07	3.57E+09	1.04E+10	1.23E+03	1.01E+09					
December	1.46E+07	3.87E+09	8.46E+09	1.23E+03	1.01E+09					

South River impairment (Subsides 57-44).										
	Commercial	Cropland	Farmstead	Improved Pasture	Livestock Access					
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)					
January	3.70E+08	1.27E+10	1.49E+09	5.85E+09	5.39E+09					
February	3.70E+08	1.52E+10	1.45E+09	6.89E+09	5.55E+09					
March	3.70E+08	1.36E+11	1.39E+09	8.72E+09	6.46E+09					
April	3.70E+08	1.36E+11	1.35E+09	8.41E+09	7.48E+09					
May	3.70E+08	1.34E+11	1.32E+09	7.06E+09	7.48E+09					
June	3.70E+08	1.47E+09	1.29E+09	9.27E+09	8.38E+09					
July	3.70E+08	1.46E+09	1.22E+09	9.32E+09	8.38E+09					
August	3.70E+08	1.46E+09	1.22E+09	9.32E+09	8.38E+09					
September	3.70E+08	4.10E+10	1.22E+09	7.69E+09	7.48E+09					
October	3.70E+08	1.35E+11	1.18E+09	7.74E+09	6.46E+09					
November	3.70E+08	1.35E+11	1.22E+09	7.13E+09	6.22E+09					
December	3.70E+08	1.27E+10	1.35E+09	6.08E+09	5.39E+09					

Table B.8Current conditions (2003) of land applied fecal coliform load for the
South River impairment (Subsheds 39-44).

Table B.8Current conditions (2003) of land applied fecal coliform load for the
South River impairment (Subsheds 39-44) (Continued).

	South River impairment (Subsides 57-44) (Continued).									
	Livestock Operation	Residential	Unimproved Pasture	Water	Woodland					
	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)	(cfu/ac*day)					
January	1.91E+08	5.28E+09	6.06E+09	3.09E+03	9.35E+08					
February	1.91E+08	5.18E+09	7.10E+09	3.09E+03	9.35E+08					
March	1.91E+08	4.99E+09	8.93E+09	3.09E+03	9.35E+08					
April	1.91E+08	4.89E+09	8.62E+09	3.09E+03	9.35E+08					
May	1.91E+08	4.79E+09	7.27E+09	3.09E+03	9.35E+08					
June	1.91E+08	4.69E+09	7.24E+09	3.09E+03	9.35E+08					
July	1.91E+08	4.49E+09	7.30E+09	3.09E+03	9.35E+08					
August	1.91E+08	4.49E+09	7.30E+09	3.09E+03	9.35E+08					
September	1.91E+08	4.49E+09	7.90E+09	3.09E+03	9.35E+08					
October	1.91E+08	4.39E+09	7.95E+09	3.09E+03	9.35E+08					
November	1.91E+08	4.49E+09	7.34E+09	3.09E+03	9.35E+08					
December	1.91E+08	4.89E+09	6.29E+09	3.09E+03	9.35E+08					

			_	Opper whome Kiver impairment (subsides 1-10).									
Reach	Source	Jan	Feb	Mar	Apr	May	Jun						
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)						
1	Human	1.18E+08	1.18E+08	1.18E+08	1.18E+08	1.18E+08	1.18E+08						
	Livestock	1.19E+11	1.23E+11	2.08E+11	3.02E+11	3.02E+11	3.88E+11						
	Wildlife	2.95E+10	2.95E+10	2.95E+10	2.95E+10	2.95E+10	2.95E+10						
2	Human	2.07E+08	2.07E+08	2.07E+08	2.07E+08	2.07E+08	2.07E+08						
	Livestock	1.50E+10	1.94E+10	2.77E+10	3.88E+10	3.88E+10	4.72E+10						
	Wildlife	1.67E+10	1.67E+10	1.67E+10	1.67E+10	1.67E+10	1.67E+10						
3	Human	3.01E+08	3.01E+08	3.01E+08	3.01E+08	3.01E+08	3.01E+08						
	Livestock	2.48E+10	3.19E+10	4.56E+10	6.38E+10	6.38E+10	7.75E+10						
	Wildlife	1.82E+10	1.82E+10	1.82E+10	1.82E+10	1.82E+10	1.82E+10						
4	Human	2.72E+07	2.72E+07	2.72E+07	2.72E+07	2.72E+07	2.72E+07						
	Livestock	4.12E+10	4.36E+10	7.28E+10	1.02E+11	1.02E+11	1.32E+11						
	Wildlife	3.84E+09	3.84E+09	3.84E+09	3.84E+09	3.84E+09	3.84E+09						
5	Human	3.52E+08	3.52E+08	3.52E+08	3.52E+08	3.52E+08	3.52E+08						
	Livestock	1.14E+10	1.39E+10	1.99E+10	2.79E+10	2.79E+10	3.39E+10						
	Wildlife	8.96E+09	8.96E+09	8.96E+09	8.96E+09	8.96E+09	8.96E+09						
6	Human	1.22E+09	1.22E+09	1.22E+09	1.22E+09	1.22E+09	1.22E+09						
	Livestock	1.79E+10	2.33E+10	3.33E+10	6.34E+10	6.34E+10	7.70E+10						
	Wildlife	2.67E+10	2.67E+10	2.67E+10	2.67E+10	2.67E+10	2.67E+10						
7	Human	7.71E+07	7.71E+07	7.71E+07	7.71E+07	7.71E+07	7.71E+07						
	Livestock	1.42E+09	1.70E+09	2.97E+09	4.35E+09	4.35E+09	5.62E+09						
	Wildlife	3.64E+09	3.64E+09	3.64E+09	3.64E+09	3.64E+09	3.64E+09						
8	Human	2.98E+07	2.98E+07	2.98E+07	2.98E+07	2.98E+07	2.98E+07						
	Livestock	0.00E+00	1.40E+08	2.00E+08	2.80E+08	2.80E+08	3.40E+08						
	Wildlife	4.81E+09	4.81E+09	4.81E+09	4.81E+09	4.81E+09	4.81E+09						
9	Human	1.30E+09	1.30E+09	1.30E+09	1.30E+09	1.30E+09	1.30E+09						
	Livestock	2.45E+09	3.18E+09	4.54E+09	7.39E+09	7.39E+09	8.97E+09						
	Wildlife	4.60E+10	4.60E+10	4.60E+10	4.60E+10	4.60E+10	4.60E+10						
10	Human	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00						
	Livestock	4.96E+09	5.70E+09	8.14E+09	1.14E+10	1.14E+10	1.38E+10						
	Wildlife	9.03E+09	9.03E+09	9.03E+09	9.03E+09	9.03E+09	9.03E+09						

Table B.9Monthly, directly deposited fecal coliform loads in each reach of the
Upper Middle River impairment (subsheds 1-10).

Reach	Source	Jul	Aug	Sep	Oct	Nov	Dec
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)
1	Human	1.18E+08	1.18E+08	1.18E+08	1.18E+08	1.18E+08	1.18E+08
	Livestock	3.88E+11	3.88E+11	3.02E+11	2.08E+11	2.03E+11	1.19E+11
	Wildlife	2.95E+10	2.95E+10	2.95E+10	2.95E+10	2.95E+10	2.95E+10
2	Human	2.07E+08	2.07E+08	2.07E+08	2.07E+08	2.07E+08	2.07E+08
	Livestock	4.72E+10	4.72E+10	3.88E+10	2.77E+10	2.14E+10	1.50E+10
	Wildlife	1.67E+10	1.67E+10	1.67E+10	1.67E+10	1.67E+10	1.67E+10
3	Human	3.01E+08	3.01E+08	3.01E+08	3.01E+08	3.01E+08	3.01E+08
	Livestock	7.75E+10	7.75E+10	6.38E+10	4.56E+10	3.55E+10	2.48E+10
	Wildlife	1.82E+10	1.82E+10	1.82E+10	1.82E+10	1.82E+10	2.00E+10
4	Human	2.72E+07	2.72E+07	2.72E+07	2.72E+07	2.72E+07	2.72E+07
	Livestock	1.32E+11	1.32E+11	1.02E+11	7.28E+10	6.94E+10	4.12E+10
	Wildlife	3.84E+09	3.84E+09	3.84E+09	3.84E+09	3.84E+09	3.84E+09
5	Human	3.52E+08	3.52E+08	3.52E+08	3.52E+08	3.52E+08	3.52E+08
	Livestock	3.39E+10	3.39E+10	2.79E+10	1.99E+10	1.63E+10	1.14E+10
	Wildlife	8.96E+09	8.96E+09	8.96E+09	8.96E+09	8.96E+09	8.96E+09
6	Human	1.22E+09	1.22E+09	1.22E+09	1.22E+09	1.22E+09	1.22E+09
	Livestock	7.70E+10	7.70E+10	6.34E+10	3.33E+10	2.56E+10	1.79E+10
	Wildlife	2.67E+10	2.67E+10	2.67E+10	2.67E+10	2.67E+10	2.67E+10
7	Human	7.71E+07	7.71E+07	7.71E+07	7.71E+07	7.71E+07	7.71E+07
	Livestock	5.62E+09	5.62E+09	4.35E+09	2.97E+09	2.57E+09	1.42E+09
	Wildlife	3.64E+09	3.64E+09	3.64E+09	3.64E+09	3.64E+09	3.64E+09
8	Human	2.98E+07	2.98E+07	2.98E+07	2.98E+07	2.98E+07	2.98E+07
	Livestock	3.40E+08	3.40E+08	2.80E+08	2.00E+08	0.00E+00	0.00E+00
	Wildlife	4.81E+09	4.81E+09	4.81E+09	4.81E+09	4.81E+09	4.81E+09
9	Human	1.30E+09	1.30E+09	1.30E+09	1.30E+09	1.30E+09	1.30E+09
	Livestock	8.97E+09	8.97E+09	7.39E+09	4.54E+09	3.50E+09	2.45E+09
	Wildlife	4.60E+10	4.60E+10	4.60E+10	4.60E+10	4.60E+10	4.60E+10
10	Human	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Livestock	1.38E+10	1.38E+10	1.14E+10	8.14E+09	7.09E+09	4.96E+09
	Wildlife	9.03E+09	9.03E+09	9.03E+09	9.03E+09	9.03E+09	9.03E+09

Table B.9Monthly, directly deposited fecal coliform loads in each reach of the
Upper Middle River impairment (subsheds 1-10) cont.

Reach	Source	Jan (cfu/day)	Feb (cfu/day)	Mar (cfu/day)	Apr (cfu/day)		
11	Human	1.60E+09	1.60E+09	1.60E+09	1.60E+09	1.60E+09	1.60E+09
	Livestock	1.23E+10	1.48E+10	2.11E+10	2.96E+10	2.96E+10	3.59E+10
	Wildlife	5.23E+10	5.23E+10	5.23E+10	5.23E+10	5.23E+10	5.23E+10
12	Human	4.49E+08	4.49E+08	4.49E+08	4.49E+08	4.49E+08	4.49E+08
	Livestock	3.84E+09	4.16E+09	5.94E+09	8.32E+09	8.32E+09	1.01E+10
	Wildlife	1.96E+10	1.96E+10	1.96E+10	1.96E+10	1.96E+10	1.96E+10
Reach	Source	Jul	Aug	Sep	Oct	Nov	Dec
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)
11	Human	1.60E+09	1.60E+09	1.60E+09	1.60E+09	1.60E+09	1.60E+09
	Livestock	3.59E+10	3.59E+10	2.96E+10	2.11E+10	1.76E+10	1.23E+10
	Wildlife	5.23E+10	5.23E+10	5.23E+10	5.23E+10	5.23E+10	5.23E+10
12	Human	4.49E+08	4.49E+08	4.49E+08	4.49E+08	4.49E+08	4.49E+08
	Livestock	1.01E+10	1.01E+10	8.32E+09	5.94E+09	5.49E+09	3.84E+09
	Wildlife	1.96E+10	1.00 ± 10	1.06E+10	1.96E+10	1.96E+10	1.96E+10

Table B.10Monthly, directly deposited fecal coliform loads in each reach of the
Jennings Branch watershed (non-impaired) (subsheds 11-12).

			-	-			
Reach	Source	Jan	Feb	Mar	Apr	May	Jun
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)
13	Human	3.64E+07	3.64E+07	3.64E+07	3.64E+07	3.64E+07	3.64E+07
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Wildlife	1.03E+10	1.03E+10	1.03E+10	1.03E+10	1.03E+10	1.03E+10
14	Human	1.05E+08	1.05E+08	1.05E+08	1.05E+08	1.05E+08	1.05E+08
	Livestock	1.86E+10	1.86E+10	3.40E+10	4.95E+10	4.95E+10	6.49E+10
	Wildlife	7.11E+09	7.11E+09	7.11E+09	7.11E+09	7.11E+09	7.11E+09
15	Human	2.66E+08	2.66E+08	2.66E+08	2.66E+08	2.66E+08	2.66E+08
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Wildlife	8.65E+09	8.65E+09	8.65E+09	8.65E+09	8.65E+09	8.65E+09
16	Human	2.54E+08	2.54E+08	2.54E+08	2.54E+08	2.54E+08	2.54E+08
	Livestock	4.36E+10	4.45E+10	8.00E+10	1.16E+11	1.16E+11	1.52E+11
	Wildlife	1.20E+10	1.20E+10	1.20E+10	1.20E+10	1.20E+10	1.20E+10
17	Human	1.77E+08	1.77E+08	1.77E+08	1.77E+08	1.77E+08	1.77E+08
	Livestock	1.84E+10	2.01E+10	3.47E+10	5.03E+10	5.03E+10	6.50E+10
	Wildlife	1.23E+10	1.23E+10	1.23E+10	1.23E+10	1.23E+10	1.23E+10

Table B.11Monthly, directly deposited fecal coliform loads in each reach of the
Moffett Creek impairment (subsheds 13-17).

Reach	Source	Jul	Aug	Sep	Oct	Nov	Dec
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)
13	Human	3.64E+07	3.64E+07	3.64E+07	3.64E+07	3.64E+07	3.64E+07
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Wildlife	1.03E+10	1.03E+10	1.03E+10	1.03E+10	1.03E+10	1.03E+10
14	Human	1.05E+08	1.05E+08	1.05E+08	1.05E+08	1.05E+08	1.05E+08
	Livestock	6.49E+10	6.49E+10	4.95E+10	3.40E+10	3.40E+10	1.86E+10
	Wildlife	7.11E+09	7.11E+09	7.11E+09	7.11E+09	7.11E+09	7.11E+09
15	Human	2.66E+08	2.66E+08	2.66E+08	2.66E+08	2.66E+08	2.66E+08
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Wildlife	8.65E+09	8.65E+09	8.65E+09	8.65E+09	8.65E+09	8.65E+09
16	Human	2.54E+08	2.54E+08	2.54E+08	2.54E+08	2.54E+08	2.54E+08
	Livestock	1.52E+11	1.52E+11	1.16E+11	8.00E+10	7.88E+10	4.36E+10
	Wildlife	1.20E+10	1.20E+10	1.20E+10	1.20E+10	1.20E+10	1.20E+10
17	Human	1.77E+08	1.77E+08	1.77E+08	1.77E+08	1.77E+08	1.77E+08
	Livestock	6.50E+10	6.50E+10	5.03E+10	3.47E+10	3.23E+10	1.84E+10
	Wildlife	1.23E+10	1.23E+10	1.23E+10	1.23E+10	1.23E+10	1.23E+10

Lewis creek inpartment (subsides 10-25).									
Reach	Source	Jan	Feb	Mar	Apr	May	Jun		
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)		
18	Human	4.71E+08	4.71E+08	4.71E+08	4.71E+08	4.71E+08	4.71E+08		
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Wildlife	7.80E+09	7.80E+09	7.80E+09	7.80E+09	7.80E+09	7.80E+09		
19	Human	3.16E+08	3.16E+08	3.16E+08	3.16E+08	3.16E+08	3.16E+08		
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Wildlife	5.29E+09	5.29E+09	5.29E+09	5.29E+09	5.29E+09	5.29E+09		
20	Human	1.34E+08	1.34E+08	1.34E+08	1.34E+08	1.34E+08	1.34E+08		
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Wildlife	4.04E+09	4.04E+09	4.04E+09	4.04E+09	4.04E+09	4.04E+09		
21	Human	8.10E+07	8.10E+07	8.10E+07	8.10E+07	8.10E+07	8.10E+07		
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Wildlife	1.15E+10	1.15E+10	1.15E+10	1.15E+10	1.15E+10	1.15E+10		
22	Human	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
	Livestock	8.55E+09	8.55E+09	1.61E+10	2.34E+10	2.34E+10	3.09E+10		
	Wildlife	4.60E+09	4.60E+09	4.60E+09	4.60E+09	4.60E+09	4.60E+09		
23	Human	2.91E+07	2.91E+07	2.91E+07	2.91E+07	2.91E+07	2.91E+07		
	Livestock	1.06E+10	1.08E+10	1.99E+10	2.89E+10	2.89E+10	3.79E+10		
	Wildlife	6.19E+09	6.19E+09	6.19E+09	6.19E+09	6.19E+09	6.19E+09		
24	Human	3.48E+07	3.48E+07	3.48E+07	3.48E+07	3.48E+07	3.48E+07		
	Livestock	2.20E+10	2.20E+10	4.13E+10	6.03E+10	6.03E+10	7.96E+10		
	Wildlife	8.00E+09	8.00E+09	8.00E+09	8.00E+09	8.00E+09	8.00E+09		
25	Human	1.33E+08	1.33E+08	1.33E+08	1.33E+08	1.33E+08	1.33E+08		
	Livestock	8.19E+09	8.54E+09	1.48E+10	2.14E+10	2.14E+10	2.77E+10		
	Wildlife	6.44E+09	6.44E+09	6.44E+09	6.44E+09	6.44E+09	6.44E+09		

Table B.12Monthly, directly deposited fecal coliform loads in each reach of the
Lewis Creek impairment (subsheds 18-25).

Reach	Source	Jul	Aug	Sep	Oct	Nov	Dec				
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)				
18	Human	4.71E+08	4.71E+08	4.71E+08	4.71E+08	4.71E+08	4.71E+08				
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
	Wildlife	7.80E+09	7.80E+09	7.80E+09	7.80E+09	7.80E+09	7.80E+09				
19	Human	3.16E+08	3.16E+08	3.16E+08	3.16E+08	3.16E+08	3.16E+08				
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
	Wildlife	5.29E+09	5.29E+09	5.29E+09	5.29E+09	5.29E+09	5.29E+09				
20	Human	1.34E+08	1.34E+08	1.34E+08	1.34E+08	1.34E+08	1.34E+08				
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
	Wildlife	4.04E+09	4.04E+09	4.04E+09	4.04E+09	4.04E+09	4.04E+09				
21	Human	8.10E+07	8.10E+07	8.10E+07	8.10E+07	8.10E+07	8.10E+07				
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
	Wildlife	1.15E+10	1.15E+10	1.15E+10	1.15E+10	1.15E+10	1.15E+10				
22	Human	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E + 00				
	Livestock	3.09E+10	3.09E+10	2.34E+10	1.61E+10	1.61E+10	8.55E+09				
	Wildlife	4.60E+09	4.60E+09	4.60E+09	4.60E+09	4.60E+09	4.60E+09				
23	Human	2.91E+07	2.91E+07	2.91E+07	2.91E+07	2.91E+07	2.91E+07				
	Livestock	3.79E+10	3.79E+10	2.89E+10	1.99E+10	1.95E+10	1.06E+10				
	Wildlife	6.19E+09	6.19E+09	6.19E+09	6.19E+09	6.19E+09	6.19E+09				
24	Human	3.48E+07	3.48E+07	3.48E+07	3.48E+07	3.48E+07	3.48E+07				
	Livestock	7.96E+10	7.96E+10	6.03E+10	4.13E+10	4.13E+10	2.20E+10				
	Wildlife	8.00E+09	8.00E+09	8.00E+09	8.00E+09	8.00E+09	8.00E+09				
25	Human	1.33E+08	1.33E+08	1.33E+08	1.33E+08	1.33E+08	1.33E+08				
	Livestock	2.77E+10	2.77E+10	2.14E+10	1.48E+10	1.43E+10	8.19E+09				
	Wildlife	6.44E+09	6.44E+09	6.44E+09	6.44E+09	6.44E+09	6.44E+09				

Table B.12Monthly, directly deposited fecal coliform loads in each reach of the
Lewis Creek impairment (subsheds 18-25) cont.

made River watershed (hon-imparted) (subsheds 20-52)										
Reach	Source	Jan	Feb	Mar	Apr	May	Jun			
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)			
26	Human	1.07E+09	1.07E+09	1.07E+09	1.07E+09	1.07E+09	1.07E+09			
	Livestock	1.65E+10	1.80E+10	2.58E+10	3.61E+10	3.61E+10	4.38E+10			
	Wildlife	2.82E+10	2.82E+10	2.82E+10	2.82E+10	2.82E+10	2.82E+10			
27	Human	2.93E+08	2.93E+08	2.93E+08	2.93E+08	2.93E+08	2.93E+08			
	Livestock	2.50E+10	2.65E+10	4.64E+10	6.73E+10	6.73E+10	8.72E+10			
	Wildlife	1.64E+10	1.64E+10	1.64E+10	1.64E+10	1.64E+10	1.64E+10			
28	Human	2.25E+08	2.25E+08	2.25E+08	2.25E+08	2.25E+08	2.25E+08			
	Livestock	1.31E+10	1.54E+10	2.27E+10	3.20E+10	3.20E+10	3.92E+10			
	Wildlife	1.68E+10	1.68E+10	1.68E+10	1.68E+10	1.68E+10	1.68E+10			
29	Human	2.53E+08	2.53E+08	2.53E+08	2.53E+08	2.53E+08	2.53E+08			
	Livestock	2.06E+10	2.30E+10	3.73E+10	5.33E+10	5.33E+10	6.76E+10			
	Wildlife	1.54E+10	1.54E+10	1.54E+10	1.54E+10	1.54E+10	1.54E+10			
30	Human	2.07E+06	2.07E+06	2.07E+06	2.07E+06	2.07E+06	2.07E+06			
	Livestock	7.91E+09	8.08E+09	1.48E+10	2.16E+10	2.16E+10	2.84E+10			
	Wildlife	1.09E+10	1.09E+10	1.09E+10	1.09E+10	1.09E+10	1.09E+10			
31	Human	8.38E+07	8.38E+07	8.38E+07	8.38E+07	8.38E+07	8.38E+07			
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
	Wildlife	9.96E+09	9.96E+09	9.96E+09	9.96E+09	9.96E+09	9.96E+09			
32	Human	1.21E+08	1.21E+08	1.21E+08	1.21E+08	1.21E+08	1.21E+08			
	Livestock	2.48E+10	2.49E+10	4.52E+10	6.57E+10	6.57E+10	8.61E+10			
	Wildlife	1.09E+10	1.09E+10	1.09E+10	1.09E+10	1.09E+10	1.09E+10			

Table B.13Monthly, directly deposited fecal coliform loads in each reach of the
Middle River watershed (non-impaired) (subsheds 26-32)

	1VIIC		water site	u (non-nn	pair cu) (s	ubsilcus 2	(-52) cont.
Reach	Source	Jul	Aug	Sep	Oct	Nov	Dec
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)
26	Human	1.07E+09	1.07E+09	1.07E+09	1.07E+09	1.07E+09	1.07E+09
	Livestock	4.38E+10	4.38E+10	3.61E+10	2.58E+10	2.36E+10	1.65E+10
	Wildlife	2.82E+10	2.82E+10	2.82E+10	2.82E+10	2.82E+10	2.82E+10
27	Human	2.93E+08	2.93E+08	2.93E+08	2.93E+08	2.93E+08	2.93E+08
	Livestock	8.72E+10	8.72E+10	6.73E+10	4.64E+10	4.42E+10	2.50E+10
	Wildlife	1.64E+10	1.64E+10	1.64E+10	1.64E+10	1.64E+10	1.64E+10
28	Human	2.25E+08	2.25E+08	2.25E+08	2.25E+08	2.25E+08	2.25E+08
	Livestock	3.92E+10	3.92E+10	3.20E+10	2.27E+10	1.94E+10	1.31E+10
	Wildlife	1.68E+10	1.68E+10	1.68E+10	1.68E+10	1.68E+10	1.68E+10
29	Human	2.53E+08	2.53E+08	2.53E+08	2.53E+08	2.53E+08	2.53E+08
	Livestock	6.76E+10	6.76E+10	5.33E+10	3.73E+10	3.39E+10	2.06E+10
	Wildlife	1.54E+10	1.54E+10	1.54E+10	1.54E+10	1.54E+10	1.54E+10
30	Human	2.07E+06	2.07E+06	2.07E+06	2.07E+06	2.07E+06	2.07E+06
	Livestock	2.84E+10	2.84E+10	2.16E+10	1.48E+10	1.46E+10	7.91E+09
	Wildlife	1.09E+10	1.09E+10	1.09E+10	1.09E+10	1.09E+10	1.09E+10
31	Human	8.38E+07	8.38E+07	8.38E+07	8.38E+07	8.38E+07	8.38E+07
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Wildlife	9.96E+09	9.96E+09	9.96E+09	9.96E+09	9.96E+09	9.96E+09
32	Human	1.21E+08	1.21E+08	1.21E+08	1.21E+08	1.21E+08	1.21E+08
	Livestock	8.61E+10	8.61E+10	6.57E+10	4.52E+10	4.50E+10	2.48E+10
	Wildlife	1.09E+10	1.09E+10	1.09E+10	1.09E+10	1.09E+10	1.09E+10

Table B.13Monthly, directly deposited fecal coliform loads in each reach of the
Middle River watershed (non-impaired) (subsheds 26-32) cont.

Table B.14Monthly, directly deposited fecal coliform loads in each reach of the
Polecat Draft impairment (subshed 33).

Reach	Source	Jan	Feb	Mar	Apr	May	Jun
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)
33	Human	1.68E+08	1.68E+08	1.68E+08	1.68E+08	1.68E+08	1.68E+08
	Livestock	2.63E+10	2.88E+10	4.93E+10	7.10E+10	7.10E+10	9.15E+10
	Wildlife	1.59E+10	1.59E+10	1.59E+10	1.59E+10	1.59E+10	1.59E+10
Derel	S	T1	A	C	0-4	N	D
Reach	Source	Jul	Aug	-	Oct	Nov	Dec
Reach	Source		Aug (cfu/day)	-			
Reach	Source Human		6	(cfu/day)		(cfu/day)	(cfu/day)
	Human	(cfu/day)	(cfu/day) 1.68E+08	(cfu/day) 1.68E+08	(cfu/day) 1.68E+08	(cfu/day) 1.68E+08	(cfu/day) 1.68E+08

	a				•		
Reach	Source	Jan	Feb	Mar	Apr	May	Jun
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)
34	Human	2.38E+08	2.38E+08	2.38E+08	2.38E+08	2.38E+08	2.38E+08
	Livestock	7.05E+10	7.55E+10	1.32E+11	1.91E+11	1.91E+11	2.48E+11
	Wildlife	2.67E+10	2.67E+10	2.67E+10	2.67E+10	2.67E+10	2.67E+10
35	Human	1.94E+08	1.94E+08	1.94E+08	1.94E+08	1.94E+08	1.94E+08
	Livestock	4.81E+10	5.17E+10	9.01E+10	1.30E+11	1.30E+11	1.68E+11
	Wildlife	1.78E+10	1.78E+10	1.78E+10	1.78E+10	1.78E+10	1.78E+10
36	Human	2.99E+07	2.99E+07	2.99E+07	2.99E+07	2.99E+07	2.99E+07
	Livestock	6.48E+09	8.42E+09	1.20E+10	1.68E+10	1.68E+10	2.05E+10
	Wildlife	1.27E+10	1.27E+10	1.27E+10	1.27E+10	1.27E+10	1.27E+10
37	Human	5.12E+07	5.12E+07	5.12E+07	5.12E+07	5.12E+07	5.12E+07
	Livestock	9.77E+10	1.01E+11	1.85E+11	2.70E+11	2.70E+11	3.54E+11
	Wildlife	1.60E+10	1.60E+10	1.60E+10	1.60E+10	1.60E+10	1.60E+10
38	Human	1.31E+07	1.31E+07	1.31E+07	1.31E+07	1.31E+07	1.31E+07
	Livestock	1.92E+10	1.96E+10	3.61E+10	5.26E+10	5.26E+10	6.91E+10
	Wildlife	2.01E+13	1.82E+13	2.01E+13	1.95E+13	2.01E+13	1.95E+13
Reach	Source	Jul	Aug	Sep	Oct	Nov	Dec

Table B.15	Monthly, directly deposited fecal coliform loads in each reach of the
	Lower Middle River impairment (subsheds 34-38).

Reach	Source	Jul	Aug	Sep	Oct	Nov	Dec
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)
34	Human	2.38E+08	2.38E+08	2.38E+08	2.38E+08	2.38E+08	2.38E+08
	Livestock	2.48E+11	2.48E+11	1.91E+11	1.32E+11	1.25E+11	7.05E+10
	Wildlife	2.67E+10	2.67E+10	2.67E+10	2.67E+10	2.67E+10	2.67E+10
35	Human	1.94E+08	1.94E+08	1.94E+08	1.94E+08	1.94E+08	1.94E+08
	Livestock	1.68E+11	1.68E+11	1.30E+11	9.01E+10	8.48E+10	4.81E+10
	Wildlife	1.78E+10	1.78E+10	1.78E+10	1.78E+10	1.78E+10	1.78E+10
36	Human	2.99E+07	2.99E+07	2.99E+07	2.99E+07	2.99E+07	2.99E+07
	Livestock	2.05E+10	2.05E+10	1.68E+10	1.20E+10	9.25E+09	6.48E+09
	Wildlife	1.27E+10	1.27E+10	1.27E+10	1.27E+10	1.27E+10	1.27E+10
37	Human	5.12E+07	5.12E+07	5.12E+07	5.12E+07	5.12E+07	5.12E+07
	Livestock	3.54E+11	3.54E+11	2.70E+11	1.85E+11	1.80E+11	9.77E+10
	Wildlife	1.60E+10	1.60E+10	1.60E+10	1.60E+10	1.60E+10	1.60E+10
38	Human	1.31E+07	1.31E+07	1.31E+07	1.31E+07	1.31E+07	1.31E+07
	Livestock	6.91E+10	6.91E+10	5.26E+10	3.61E+10	3.56E+10	1.92E+10
	Wildlife	2.01E+13	2.01E+13	1.95E+13	2.01E+13	1.95E+13	2.01E+13

Table B.16	Monthly, directly deposited fecal coliform loads in each reach of the
	South River impairment (subsheds 39-44).

Reach	Source	Jan	Feb	Mar	Apr	May	Jun
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)
39	Human	3.59E+08	3.59E+08	3.59E+08	3.59E+08	3.59E+08	3.59E+08
	Livestock	2.81E+10	3.36E+10	5.20E+10	7.43E+10	7.43E+10	9.28E+10
	Wildlife	1.82E+10	1.82E+10	1.82E+10	1.82E+10	1.82E+10	1.82E+10
40	Human	4.57E+08	4.57E+08	4.57E+08	4.57E+08	4.57E+08	4.57E+08
	Livestock	1.40E+10	1.63E+10	2.33E+10	3.26E+10	3.26E+10	3.96E+10
	Wildlife	2.01E+13	1.82E+13	2.01E+13	1.95E+13	2.01E+13	1.95E+13
41	Human	1.53E+09	1.53E+09	1.53E+09	1.53E+09	1.53E+09	1.53E+09
	Livestock	1.75E+09	2.27E+09	3.25E+09	4.54E+09	4.54E+09	5.52E+09
	Wildlife	3.10E+10	3.10E+10	3.10E+10	3.10E+10	3.10E+10	3.10E+10
42	Human	4.72E+07	4.72E+07	4.72E+07	4.72E+07	4.72E+07	4.72E+07
	Livestock	5.97E+09	7.05E+09	1.08E+10	1.53E+10	1.53E+10	1.90E+10
	Wildlife	1.12E+10	1.12E+10	1.12E+10	1.12E+10	1.12E+10	1.12E+10
43	Human	9.91E+07	9.91E+07	9.91E+07	9.91E+07	9.91E+07	9.91E+07
	Livestock	1.66E+10	1.72E+10	3.12E+10	4.53E+10	4.53E+10	5.93E+10
	Wildlife	1.25E+10	1.25E+10	1.25E+10	1.25E+10	1.25E+10	1.25E+10
44	Human	8.64E+07	8.64E+07	8.64E+07	8.64E+07	8.64E+07	8.64E+07
	Livestock	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Wildlife	1.14E+10	1.14E+10	1.14E+10	1.14E+10	1.14E+10	1.14E+10
Reach	Source	Jul	Aug	Sep	Oct	Nov	Dec
	500100		-	-			
		(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)	(cfu/day)
39	Human	(cfu/day) 3.59E+08	(cfu/day) 3.59E+08	(cfu/day) 3.59E+08	3.59E+08	3.59E+08	(cfu/day) 3.59E+08
39	Human Livestock	(cfu/day) 3.59E+08 9.28E+10	(cfu/day) 3.59E+08 9.28E+10	(cfu/day) 3.59E+08 7.43E+10	3.59E+08 5.20E+10	3.59E+08 4.42E+10	(cfu/day) 3.59E+08 2.81E+10
	Human Livestock Wildlife	(cfu/day) 3.59E+08 9.28E+10 1.82E+10	(cfu/day) 3.59E+08 9.28E+10 1.82E+10	(cfu/day) 3.59E+08 7.43E+10 1.82E+10	3.59E+08 5.20E+10 1.82E+10	3.59E+08 4.42E+10 1.82E+10	(cfu/day) 3.59E+08 2.81E+10 1.82E+10
39 40	Human Livestock Wildlife Human	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08	3.59E+08 5.20E+10 1.82E+10 4.57E+08	3.59E+08 4.42E+10 1.82E+10 4.57E+08	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08
	Human Livestock Wildlife Human Livestock	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10
40	Human Livestock Wildlife Human Livestock Wildlife	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13
	Human Livestock Wildlife Human Livestock Wildlife Human	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09
40	Human Livestock Wildlife Human Livestock Wildlife Human Livestock	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09 4.54E+09	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09 3.25E+09	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09 2.50E+09	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09 1.75E+09
40 41	Human Livestock Wildlife Human Livestock Wildlife Uivestock Wildlife	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09 4.54E+09	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09 3.25E+09	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09 2.50E+09	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09 1.75E+09
40	Human Livestock Wildlife Human Livestock Wildlife Human Livestock Wildlife Human	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09 4.54E+09 3.10E+10 4.72E+07	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09 3.25E+09 3.10E+10 4.72E+07	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09 2.50E+09 3.10E+10 4.72E+07	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09 1.75E+09 3.10E+10 4.72E+07
40 41	Human Livestock Wildlife Human Livestock Wildlife Uivestock Wildlife	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09 4.54E+09 3.10E+10	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09 3.25E+09 3.10E+10	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09 2.50E+09 3.10E+10	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09 1.75E+09 3.10E+10
40 41 42	Human Livestock Wildlife Human Livestock Wildlife Human Livestock Wildlife Human	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10 1.12E+10	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10 1.12E+10	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09 4.54E+09 3.10E+10 4.72E+07 1.53E+10 1.12E+10	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09 3.25E+09 3.10E+10 4.72E+07 1.08E+10 1.12E+10	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09 2.50E+09 3.10E+10 4.72E+07 9.21E+09 1.12E+10	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09 1.75E+09 3.10E+10 4.72E+07 5.97E+09 1.12E+10
40 41	Human Livestock Wildlife Human Livestock Wildlife Human Livestock Wildlife Human	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09 4.54E+09 3.10E+10 4.72E+07 1.53E+10	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09 3.25E+09 3.10E+10 4.72E+07 1.08E+10 1.12E+10 9.91E+07	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09 2.50E+09 3.10E+10 4.72E+07 9.21E+09	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09 1.75E+09 3.10E+10 4.72E+07 5.97E+09
40 41 42	Human Livestock Wildlife Human Livestock Wildlife Human Livestock Wildlife Human	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10 1.12E+10	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10 1.12E+10	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09 4.54E+09 3.10E+10 4.72E+07 1.53E+10 1.12E+10	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09 3.25E+09 3.10E+10 4.72E+07 1.08E+10 1.12E+10	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09 2.50E+09 3.10E+10 4.72E+07 9.21E+09 1.12E+10	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09 1.75E+09 3.10E+10 4.72E+07 5.97E+09 1.12E+10 9.91E+07 1.66E+10
40 41 42	Human Livestock Wildlife Human Livestock Wildlife Human Livestock Wildlife Human Livestock Wildlife	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10 1.12E+10 9.91E+07	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10 1.12E+10 9.91E+07 5.93E+10 1.25E+10	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09 4.54E+09 3.10E+10 4.72E+07 1.53E+10 1.12E+10 9.91E+07	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09 3.25E+09 3.10E+10 4.72E+07 1.08E+10 1.12E+10 9.91E+07 3.12E+10 1.25E+10	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09 2.50E+09 3.10E+10 4.72E+07 9.21E+09 1.12E+10 9.91E+07	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09 1.75E+09 3.10E+10 4.72E+07 5.97E+09 1.12E+10 9.91E+07
40 41 42	Human Livestock Wildlife Human Livestock Wildlife Human Livestock Wildlife Human Livestock	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10 1.12E+10 9.91E+07 5.93E+10	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10 1.12E+10 9.91E+07 5.93E+10	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09 4.54E+09 3.10E+10 4.72E+07 1.53E+10 1.12E+10 9.91E+07 4.53E+10	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09 3.25E+09 3.10E+10 4.72E+07 1.08E+10 1.12E+10 9.91E+07 3.12E+10	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09 2.50E+09 3.10E+10 4.72E+07 9.21E+09 1.12E+10 9.91E+07 3.04E+10	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09 1.75E+09 3.10E+10 4.72E+07 5.97E+09 1.12E+10 9.91E+07 1.66E+10
40 41 42 43	Human Livestock Wildlife Human Livestock Wildlife Human Livestock Wildlife Human Livestock Wildlife	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10 1.12E+10 9.91E+07 5.93E+10 1.25E+10	(cfu/day) 3.59E+08 9.28E+10 1.82E+10 4.57E+08 3.96E+10 2.01E+13 1.53E+09 5.52E+09 3.10E+10 4.72E+07 1.90E+10 1.12E+10 9.91E+07 5.93E+10 1.25E+10	(cfu/day) 3.59E+08 7.43E+10 1.82E+10 4.57E+08 3.26E+10 1.95E+13 1.53E+09 4.54E+09 3.10E+10 4.72E+07 1.53E+10 1.12E+10 9.91E+07 4.53E+10 1.25E+10	3.59E+08 5.20E+10 1.82E+10 4.57E+08 2.33E+10 2.01E+13 1.53E+09 3.25E+09 3.10E+10 4.72E+07 1.08E+10 1.12E+10 9.91E+07 3.12E+10 1.25E+10	3.59E+08 4.42E+10 1.82E+10 4.57E+08 2.00E+10 1.95E+13 1.53E+09 2.50E+09 3.10E+10 4.72E+07 9.21E+09 1.12E+10 9.91E+07 3.04E+10 1.25E+10	(cfu/day) 3.59E+08 2.81E+10 1.82E+10 4.57E+08 1.40E+10 2.01E+13 1.53E+09 1.75E+09 3.10E+10 4.72E+07 5.97E+09 1.12E+10 9.91E+07 1.66E+10 1.25E+10

Table B.17	Existing an	Existing annual loads from land-based sources for the Upper Middle River impairment (Subsheds 1-10).											
Source	Commercial Services (cfu/yr)	Cropland (cfu/yr)	Farmstead (cfu/yr)	Improved Pasture (cfu/yr)	Livestock Access (cfu/yr)	Livestock Operation (cfu/yr)	Residential (cfu/yr)	Unimproved Pasture (cfu/yr)	Water (cfu/yr)	Woodlands (cfu/yr)			
Pets	(ciu/yi)	(eiu/ji)	(cru/j1)	(cru/yr)	(ciu/ji)	(clu/yl)	(cru/yr)	(ciu yi)	(cru/yr)	(ciu/ji)			
Dogs	0.00E+00	0.00E+00	6.94E+12	0.00E+00	0.00E+00	0.00E+00	6.03E+13	0.00E+00	0.00E+00	0.00E+00			
Cats	0.00E+00	0.00E+00	5.38E+06	0.00E+00	0.00E+00	0.00E+00	4.67E+07	0.00E+00	0.00E+00	0.00E+00			
Total	0.00E+00	0.00E+00	6.94E+12	0.00E+00	0.00E+00	0.00E+00	6.03E+13	0.00E+00	0.00E+00	0.00E+00			
<u>Human</u>													
Failed Septic	0.00E+00	0.00E+00	9.24E+12	0.00E+00	0.00E+00	0.00E+00	6.54E+13	0.00E+00	0.00E+00	0.00E+00			
Livestock													
Dairy	0.00E+00	1.20E+16	0.00E+00	3.31E+15	1.95E+14	0.00E+00	0.00E+00	1.64E+13	0.00E+00	0.00E+00			
Beef	0.00E+00	0.00E+00	0.00E+00	4.45E+15	2.45E+14	0.00E+00	0.00E+00	9.59E+13	0.00E+00	0.00E+00			
Horse	0.00E+00	0.00E+00	0.00E+00	3.27E+14	0.00E+00	0.00E+00	0.00E+00	1.23E+13	0.00E+00	0.00E+00			
Swine	0.00E+00	8.39E+13	0.00E+00	4.67E+12	0.00E+00	6.31E+12	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Sheep	0.00E+00	0.00E+00	0.00E+00	5.64E+12	0.00E+00	0.00E+00	0.00E+00	4.68E+11	0.00E+00	0.00E+00			
Goat	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Poultry	0.00E+00	7.91E+13	0.00E+00	7.58E+14	0.00E+00	0.00E+00	0.00E+00	3.02E+13	0.00E+00	0.00E+00			
Total	0.00E+00	1.22E+16	0.00E+00	8.86E+15	4.40E+14	6.31E+12	0.00E+00	1.55E+14	0.00E+00	0.00E+00			
Wildlife													
Raccoon	3.49E+11	5.51E+13	1.31E+12	6.25E+14	5.76E+13	2.29E+11	8.79E+12	2.95E+13	0.00E+00	5.56E+14			
Muskrat	1.45E+11	2.56E+13	9.28E+11	4.25E+14	2.36E+14	2.61E+11	5.77E+12	2.97E+13	0.00E+00	3.68E+14			
Deer	5.36E+10	9.15E+12	1.88E+11	9.52E+13	5.43E+12	3.47E+10	5.15E+11	3.55E+12	0.00E+00	9.55E+13			
Turkey	2.55E+07	1.49E+08	2.57E+07	1.41E+10	1.02E+09	5.30E+06	6.92E+07	5.61E+08	0.00E+00	5.28E+10			
Goose	1.05E+08	6.71E+09	8.06E+08	1.11E+11	6.17E+10	1.81E+08	1.50E+09	7.75E+09	0.00E+00	9.56E+10			
Duck	3.88E+06	2.46E+08	2.96E+07	4.06E+09	2.27E+09	6.65E+06	5.51E+07	2.85E+08	0.00E+00	3.51E+09			
Unquantifiable_	5.48E+10	8.99E+12	2.42E+11	1.14E+14	3.00E+13	5.25E+10	1.51E+12	6.28E+12	0.00E+00	1.02E+14			
Total	6.02E+11	9.89E+13	2.66E+12	1.26E+15	3.30E+14	5.77E+11	1.66E+13	6.90E+13	0.00E+00	1.12E+15			

Source	Commercial Services	Cropland	Farmstead	Improved Pasture	Livestock Access	Livestock Operation	Residential	Unimproved Pasture	Water	Woodlands
	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)
Pets										
Dogs	0.00E+00	0.00E+00	2.26E+12	0.00E+00	0.00E+00	0.00E+00	2.89E+13	0.00E + 00	0.00E+00	0.00E+00
Cats	0.00E+00	0.00E+00	1.75E+06	0.00E+00	0.00E+00	0.00E+00	2.24E+07	0.00E+00	0.00E+00	0.00E+00
Total	0.00E+00	0.00E+00	2.26E+12	0.00E+00	0.00E+00	0.00E+00	2.89E+13	0.00E+00	0.00E+00	0.00E+00
<u>Human</u>										
Failed Septic	0.00E+00	0.00E+00	2.94E+12	0.00E+00	0.00E+00	0.00E+00	3.15E+13	0.00E+00	0.00E+00	0.00E+00
Livestock										
Dairy	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Beef	0.00E+00	0.00E+00	0.00E+00	4.87E+14	2.70E+13	0.00E+00	0.00E+00	1.88E+13	0.00E+00	0.00E+00
Horse	0.00E+00	0.00E+00	0.00E+00	8.22E+13	0.00E+00	0.00E+00	0.00E+00	2.63E+12	0.00E+00	0.00E+00
Swine	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Sheep	0.00E+00	0.00E+00	0.00E+00	2.34E+11	0.00E+00	0.00E+00	0.00E+00	5.42E+09	0.00E+00	0.00E+00
Goat	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Poultry	0.00E+00	3.77E+13	0.00E+00	3.06E+14	0.00E+00	0.00E+00	0.00E+00	1.17E+13	0.00E+00	0.00E+00
Total	0.00E+00	3.77E+13	0.00E+00	8.76E+14	2.70E+13	0.00E+00	0.00E+00	3.31E+13	0.00E+00	0.00E+00
Wildlife										
Raccoon	1.74E+11	1.43E+13	5.78E+11	1.25E+14	1.45E+13	1.55E+10	8.48E+12	4.28E+12	0.00E+00	3.81E+14
Muskrat	2.61E+11	6.90E+12	6.38E+11	1.00E+14	6.10E+13	1.45E+11	1.70E+13	3.89E+12	0.00E+00	2.86E+14
Deer	2.08E+10	1.94E+12	5.46E+10	1.63E+13	1.22E+12	3.97E+09	3.27E+11	5.15E+11	0.00E+00	6.09E+13
Turkey	9.63E+06	2.04E+07	8.23E+06	2.49E+09	2.82E+08	9.77E+05	6.00E+07	8.37E+07	0.00E+00	3.40E+10
Goose	1.58E+08	1.79E+09	5.50E+08	2.61E+10	1.59E+10	3.77E+07	4.41E+09	1.01E+09	0.00E+00	7.44E+10
Duck	5.82E+06	6.59E+07	2.02E+07	9.58E+08	5.85E+08	1.38E+06	1.62E+08	3.71E+07	0.00E+00	2.73E+09
Unquantifiable	4.56E+10	2.31E+12	1.27E+11	2.41E+13	7.67E+12	1.64E+10	2.58E+12	8.68E+11	0.00E+00	7.28E+13
Total	5.02E+11	2.54E+13	1.40E+12	2.65E+14	8.44E+13	1.81E+11	2.84E+13	9.55E+12	0.00E+00	8.00E+14

B-21

Table B.19	Existing an	nual loads	from land-b	ased source	es for the M	loffett Cree	k impairmer	nt (Subsheds 1	3-17).	
Source	Commercial Services	Cropland	Farmstead	Improved Pasture	Livestock Access	Livestock Operation	Residential	Unimproved Pasture	Water	Woodlands
	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)
Pets										
Dogs	0.00E + 00	0.00E+00	4.60E+12	0.00E + 00	0.00E + 00	0.00E+00	1.36E+13	0.00E+00	0.00E+00	0.00E+00
Cats	0.00E + 00	0.00E+00	3.57E+06	0.00E+00	0.00E+00	0.00E+00	1.05E+07	0.00E+00	0.00E+00	0.00E+00
Total	0.00E + 00	0.00E + 00	4.60E+12	0.00E + 00	0.00E + 00	0.00E+00	1.36E+13	0.00E+00	0.00E+00	0.00E + 00
Human										
Failed Septic	0.00E+00	0.00E + 00	6.23E+12	0.00E+00	0.00E + 00	0.00E+00	1.29E+13	0.00E+00	0.00E+00	0.00E + 00
Livestock										
Dairy	0.00E+00	7.29E+15	0.00E+00	1.95E+15	1.30E+14	0.00E+00	0.00E+00	2.07E+14	0.00E+00	0.00E+00
Beef	0.00E+00	0.00E+00	0.00E+00	4.23E+14	2.53E+13	0.00E+00	0.00E+00	5.11E+13	0.00E+00	0.00E+00
Horse	0.00E+00	0.00E+00	0.00E+00	8.54E+13	0.00E+00	0.00E+00	0.00E+00	1.06E+13	0.00E+00	0.00E+00
Swine	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Sheep	0.00E+00	0.00E+00	0.00E+00	9.67E+11	0.00E+00	0.00E+00	0.00E+00	2.89E+11	0.00E+00	0.00E+00
Goat	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Poultry	0.00E+00	1.21E+14	0.00E+00	8.43E+14	0.00E+00	0.00E+00	0.00E+00	9.41E+13	0.00E+00	0.00E+00
Total	0.00E + 00	7.41E+15	0.00E+00	3.31E+15	1.55E+14	0.00E+00	0.00E+00	3.63E+14	0.00E+00	0.00E+00
Wildlife										
Raccoon	1.94E+10	1.79E+13	5.47E+11	1.46E+14	2.00E+13	1.32E+11	1.01E+12	1.81E+13	0.00E+00	1.90E+14
Muskrat	0.00E+00	9.66E+12	2.90E+11	1.04E+14	7.12E+13	2.32E+11	8.41E+11	1.40E+13	0.00E+00	1.32E+14
Deer	4.96E+09	2.82E+12	8.33E+10	2.27E+13	2.01E+12	2.78E+10	1.04E+11	2.85E+12	0.00E+00	3.02E+13
Turkey	2.79E+06	7.12E+07	1.58E+07	3.54E+09	4.76E+08	5.58E+06	3.34E+07	5.54E+08	0.00E+00	1.66E+10
Goose	0.00E+00	2.51E+09	2.34E+08	2.71E+10	1.86E+10	6.03E+07	2.19E+08	3.66E+09	0.00E+00	3.44E+10
Duck	0.00E+00	9.22E+07	8.59E+06	9.97E+08	6.82E+08	2.22E+06	8.03E+06	1.34E+08	0.00E+00	1.27E+09
Unquantifiable	2.43E+09	3.04E+12	9.20E+10	2.73E+13	9.32E+12	3.92E+10	1.96E+11	3.50E+12	0.00E+00	3.53E+13
Total	2.68E+10	3.35E+13	1.01E+12	3.00E+14	1.03E+14	4.31E+11	2.15E+12	3.85E+13	0.00E+00	3.88E+14

TMDL Development

Source	Commercial		Farmstead		Livestock	Livestock	Residential	<u>it (subsheds 18</u> Unimproved	Water	Woodlands
	Services	oropiana		Pasture	Access	Operation		Pasture		
	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)
Pets	•					•	•	•		
Dogs	0.00E+00	0.00E+00	1.79E+12	0.00E+00	0.00E+00	0.00E+00	4.70E+14	0.00E+00	0.00E+00	0.00E+00
Cats	0.00E+00	0.00E+00	1.39E+06	0.00E+00	0.00E+00	0.00E+00	3.64E+08	0.00E+00	0.00E+00	0.00E+00
Total	0.00E+00	0.00E+00	1.79E+12	0.00E+00	0.00E+00	0.00E+00	4.70E+14	0.00E+00	0.00E+00	0.00E+00
<u>Human</u>										
Failed Septic	0.00E+00	0.00E+00	4.92E+11	0.00E+00	0.00E+00	0.00E+00	3.79E+13	0.00E+00	0.00E+00	0.00E+00
Livestock										
Dairy	0.00E+00	5.51E+15	0.00E+00	1.53E+15	9.10E+13	0.00E+00	0.00E+00	1.38E+13	0.00E+00	0.00E+00
Beef	0.00E+00	0.00E+00	0.00E+00	9.84E+13	5.32E+12	0.00E+00	0.00E+00	1.06E+12	0.00E+00	0.00E+00
Horse	0.00E+00	0.00E+00	0.00E+00	1.11E+14	0.00E+00	0.00E+00	0.00E+00	6.50E+11	0.00E+00	0.00E+00
Swine	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Sheep	0.00E+00	0.00E+00	0.00E+00	3.59E+12	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Goat	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Poultry	0.00E+00	9.93E+12	0.00E+00	8.02E+13	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Total	0.00E+00	5.52E+15	0.00E+00	1.83E+15	9.64E+13	0.00E+00	0.00E+00	1.55E+13	0.00E+00	0.00E+00
Wildlife										
Raccoon	2.18E+12	8.05E+12	3.95E+11	2.23E+14	2.20E+13	3.88E+09	6.27E+13	7.83E+11	0.00E+00	9.28E+13
Muskrat	2.99E+12	4.15E+12	5.51E+11	1.68E+14	9.08E+13	0.00E+00	4.13E+13	0.00E+00	0.00E+00	4.60E+13
Deer	1.97E+11	1.29E+12	5.03E+10	3.14E+13	2.00E+12	9.92E+08	2.91E+12	1.99E+11	0.00E+00	1.55E+13
Turkey	4.83E+07	2.87E+07	8.93E+06	4.73E+09	3.87E+08	0.00E+00	1.86E+08	3.08E+07	0.00E+00	8.33E+09
Goose	6.22E+09	1.09E+09	6.25E+08	4.39E+10	2.45E+10	0.00E+00	1.09E+10	0.00E+00	0.00E+00	1.21E+10
Duck	2.29E+08	3.99E+07	2.30E+07	1.61E+09	9.02E+08	0.00E+00	4.02E+08	0.00E+00	0.00E+00	4.43E+08
Unquantifiable	5.37E+11	1.35E+12	9.97E+10	4.22E+13	1.15E+13	4.87E+08	1.07E+13	9.82E+10	0.00E+00	1.54E+13
Total	5.91E+12	1.48E+13	1.10E+12	4.64E+14	1.26E+14	5.35E+09	1.18E+14	1.08E+12	0.00E+00	1.70E+14

Table B.21	Existing a 32).	annual loa	ds from la	nd-based s	sources for	the Middle l	River waters	hed (non-impa	aired) (Subsl	neds 26-
Source	Commercial Services	•	Farmstead	Pasture	Livestock Access	Livestock Operation	Residential	Unimproved Pasture	Water	Woodlands
	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)
Pets										
Dogs	0.00E+00	0.00E+00	3.58E+12	0.00E+00	0.00E+00	0.00E+00	1.19E+14	0.00E+00	0.00E+00	0.00E+00
Cats	0.00E+00	0.00E+00	2.77E+06	0.00E+00	0.00E+00	0.00E+00	9.20E+07	0.00E+00	0.00E+00	0.00E+00
Total	0.00E + 00	0.00E+00	3.58E+12	0.00E+00	0.00E+00	0.00E+00	1.19E+14	0.00E+00	0.00E+00	0.00E+00
<u>Human</u>										
Failed Septic	0.00E+00	0.00E+00	3.45E+12	0.00E+00	0.00E+00	0.00E+00	7.40E+13	0.00E+00	0.00E+00	0.00E+00
Livestock										
Dairy	0.00E+00	6.28E+15	0.00E+00	1.89E+15	1.15E+14	0.00E+00	0.00E + 00	6.06E+12	0.00E+00	0.00E+00
Beef	0.00E + 00	0.00E+00	0.00E+00	1.55E+15	8.31E+13	0.00E+00	0.00E + 00	9.34E+12	0.00E+00	0.00E+00
Horse	0.00E+00	0.00E+00	0.00E+00	2.48E+14	0.00E+00	0.00E+00	0.00E + 00	1.08E+12	0.00E+00	0.00E+00
Swine	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E + 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Sheep	0.00E+00	0.00E+00	0.00E+00	5.23E+12	0.00E+00	0.00E+00	0.00E+00	4.01E+10	0.00E+00	0.00E+00
Goat	0.00E+00	0.00E+00	0.00E+00	2.25E+11	0.00E+00	0.00E+00	0.00E+00	1.24E+09	0.00E+00	0.00E+00
Poultry	0.00E+00	1.18E+14	0.00E+00	9.93E+14	0.00E+00	0.00E+00	0.00E+00	9.94E+12	0.00E+00	0.00E+00
Total	0.00E+00	6.40E+15	0.00E+00	4.69E+15	1.98E+14	0.00E+00	0.00E+00	2.65E+13	0.00E+00	0.00E+00
Wildlife										
Raccoon	7.98E+11	4.92E+13	7.60E+11	4.15E+14	4.14E+13	1.59E+11	1.10E+13	2.48E+12	0.00E+00	2.46E+14
Muskrat	1.74E+11	3.09E+13	3.77E+11	3.02E+14	1.75E+14	1.45E+11	4.29E+12	1.30E+12	0.00E+00	2.07E+14
Deer	1.53E+11	5.93E+12	1.17E+11	6.10E+13	3.69E+12	2.18E+10	6.98E+11	2.97E+11	0.00E+00	3.64E+13
Turkey	3.99E+07	9.78E+07	1.77E+07	9.31E+09	9.01E+08	4.74E+06	5.86E+07	5.43E+07	0.00E+00	1.95E+10
Goose	1.88E+08	8.04E+09	3.24E+08	7.86E+10	4.56E+10	3.77E+07	1.12E+09	3.39E+08	0.00E+00	5.39E+10
Duck	6.92E+06	2.95E+08	1.19E+07	2.89E+09	1.67E+09	1.38E+06	4.10E+07	1.25E+07	0.00E+00	1.98E+09
Unquantifiable	1.13E+11	8.60E+12	1.25E+11	7.78E+13	2.20E+13	3.26E+10	1.60E+12	4.09E+11	0.00E+00	4.90E+13
Total	1.24E+12	9.47E+13	1.38E+12	8.56E+14	2.42E+14	3.58E+11	1.76E+13	4.49E+12	0.00E+00	5.39E+14

Table B.22	Existing an	nual load	s from lan	d-based so	ources for t	he Polecat D	raft impairr	nent (subshed	1 33).	
Source	Commercial Services	Cropland	Farmstead	Improved Pasture	Livestock Access	Livestock Operation	Residential	Unimproved Pasture	Water	Woodlands
	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)
Pets										
Dogs	0.00E + 00	0.00E+00	9.37E+11	0.00E+00	0.00E+00	0.00E+00	7.26E+12	0.00E+00	0.00E + 00	0.00E+00
Cats	0.00E+00	0.00E+00	7.27E+05	0.00E+00	0.00E+00	0.00E+00	5.63E+06	0.00E+00	0.00E+00	0.00E+00
Total	0.00E+00	0.00E+00	9.37E+11	0.00E+00	0.00E+00	0.00E+00	7.26E+12	0.00E+00	0.00E+00	0.00E+00
<u>Human</u>										
Failed Septic	0.00E+00	0.00E+00	1.39E+12	0.00E+00	0.00E+00	0.00E+00	8.23E+12	0.00E+00	0.00E+00	0.00E+00
Livestock										
Dairy	0.00E+00	2.14E+15	0.00E+00	6.02E+14	3.55E+13	0.00E+00	0.00E+00	1.96E+11	0.00E+00	0.00E+00
Beef	0.00E+00	0.00E+00	0.00E+00	2.83E+14	1.52E+13	0.00E+00	0.00E+00	1.15E+11	0.00E+00	0.00E+00
Horse	0.00E+00	0.00E+00	0.00E+00	2.23E+13	0.00E+00	0.00E+00	0.00E+00	9.04E+09	0.00E+00	0.00E+00
Swine	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Sheep	0.00E+00	0.00E+00	0.00E+00	9.57E+11	0.00E+00	0.00E+00	0.00E+00	3.88E+08	0.00E+00	0.00E+00
Goat	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Poultry	0.00E+00	6.19E+13	0.00E+00	3.56E+14	0.00E+00	0.00E+00	0.00E+00	1.44E+11	0.00E+00	0.00E+00
Total	0.00E+00	2.21E+15	0.00E+00	1.26E+15	5.07E+13	0.00E+00	0.00E+00	4.64E+11	0.00E+00	0.00E+00
Wildlife										
Raccoon	0.00E+00	1.15E+13	2.05E+11	6.36E+13	5.15E+12	6.20E+10	2.33E+10	1.16E+10	0.00E+00	2.13E+13
Muskrat	0.00E+00	8.18E+12	5.80E+10	6.26E+13	2.88E+13	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.55E+12
Deer	0.00E+00	1.26E+12	1.79E+10	7.25E+12	3.27E+11	9.92E+09	2.98E+09	2.98E+09	0.00E+00	3.77E+12
Turkey	0.00E+00	2.72E+07	3.07E+06	1.07E+09	4.74E+07	2.51E+06	1.12E+06	1.26E+06	0.00E+00	2.02E+09
Goose	0.00E+00	2.13E+09	1.36E+08	1.64E+10	7.51E+09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.70E+09
Duck	0.00E+00	7.81E+07	4.98E+06	6.02E+08	2.76E+08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.26E+07
Unquantifiable	0.00E+00	2.10E+12	2.81E+10	1.33E+13	3.42E+12	7.19E+09	2.62E+09	1.46E+09	0.00E+00	3.16E+12
Total	0.00E+00	2.31E+13	3.10E+11	1.47E+14	3.77E+13	7.91E+10	2.89E+10	1.61E+10	0.00E+00	3.47E+13

Source	Commercial Services	Cropland	Farmstead	Improved Pasture	Livestock Access	Livestock Operation	Residential	Unimproved Pasture	Water	Woodlands
	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)	(cfu/yr)
Pets										
Dogs	0.00E+00	0.00E+00	4.56E+12	0.00E+00	0.00E+00	0.00E+00	3.59E+13	0.00E + 00	0.00E+00	0.00E+00
Cats	0.00E+00	0.00E+00	3.53E+06	0.00E+00	0.00E+00	0.00E+00	2.78E+07	0.00E+00	0.00E+00	0.00E+00
Total	0.00E+00	0.00E+00	4.56E+12	0.00E+00	0.00E+00	0.00E+00	3.59E+13	0.00E + 00	0.00E+00	0.00E+00
Human										
Failed Septic	0.00E+00	0.00E+00	4.46E+12	0.00E+00	0.00E+00	0.00E+00	2.67E+13	0.00E+00	0.00E+00	0.00E+00
Livestock										
Dairy	0.00E+00	2.14E+16	0.00E+00	6.30E+15	3.84E+14	0.00E+00	0.00E+00	8.21E+13	0.00E+00	0.00E+00
Beef	0.00E+00	0.00E+00	0.00E+00	1.61E+15	8.86E+13	0.00E+00	0.00E+00	2.92E+13	0.00E+00	0.00E+00
Horse	0.00E+00	0.00E+00	0.00E+00	1.40E+14	0.00E+00	0.00E+00	0.00E+00	2.43E+12	0.00E+00	0.00E+00
Swine	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E + 00	0.00E+00	0.00E+00
Sheep	0.00E+00	0.00E+00	0.00E+00	5.46E+12	0.00E+00	0.00E+00	0.00E+00	9.87E+10	0.00E+00	0.00E+00
Goat	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E + 00	0.00E+00	0.00E+00
Poultry	0.00E+00	2.00E+14	0.00E+00	8.05E+14	0.00E+00	0.00E+00	0.00E+00	3.50E+12	0.00E+00	0.00E+00
Total	0.00E+00	2.16E+16	0.00E+00	8.87E+15	4.73E+14	0.00E+00	0.00E+00	1.17E+14	0.00E+00	0.00E+00
Wildlife										
Raccoon	2.40E+11	7.14E+13	9.26E+11	3.05E+14	3.08E+13	6.20E+10	6.68E+12	4.79E+12	0.00E+00	8.85E+13
Muskrat	1.04E+12	2.52E+13	3.48E+11	2.44E+14	1.23E+14	0.00E+00	2.87E+12	1.94E+12	0.00E+00	1.13E+14
Deer	3.47E+10	1.06E+13	1.48E+11	4.13E+13	2.75E+12	1.59E+10	4.11E+11	7.37E+11	0.00E+00	1.12E+13
Turkey	5.86E+06	1.33E+08	1.86E+07	6.04E+09	5.73E+08	3.07E+06	2.87E+07	1.12E+08	0.00E+00	5.98E+09
Goose	7.16E+08	6.56E+09	6.48E+08	6.35E+10	3.21E+10	0.00E+00	7.46E+08	5.05E+08	0.00E+00	2.94E+10
Duck	2.63E+07	2.41E+08	2.38E+07	2.33E+09	1.18E+09	0.00E+00	2.74E+07	1.86E+07	0.00E+00	1.08E+09
Unquantifiable	1.32E+11	1.07E+13	1.42E+11	5.90E+13	1.56E+13	7.79E+09	9.96E+11	7.47E+11	0.00E+00	2.13E+13
Total	1.45E+12	1.18E+14	1.57E+12	6.49E+14	1.72E+14	8.57E+10	1.10E+13	8.22E+12	0.00E+00	2.34E+14

Source	Commercial Services	Cropland	Farmstead	Improved	Livestock	Livestock	Residential	Unimproved	Water	Woodlands
	Services (cfu/yr)	(cfu/yr)	(cfu/yr)	Pasture (cfu/yr)	Access (cfu/yr)	Operation (cfu/yr)	(cfu/yr)	Pasture (cfu/yr)	(cfu/yr)	(cfu/yr)
Pets	· · ·	•		· · ·	•		•	•	•	• • •
Dogs	0.00E+00	0.00E+00	4.22E+12	0.00E+00	0.00E+00	0.00E+00	6.36E+13	0.00E+00	0.00E+00	0.00E+00
Cats	0.00E+00	0.00E+00	3.27E+06	0.00E+00	0.00E+00	0.00E+00	4.93E+07	0.00E+00	0.00E+00	0.00E+00
Total	0.00E+00	0.00E+00	4.22E+12	0.00E+00	0.00E+00	0.00E+00	6.36E+13	0.00E+00	0.00E+00	0.00E+00
<u>Human</u>										
Failed Septic	0.00E+00	0.00E+00	5.88E+12	0.00E+00	0.00E+00	0.00E+00	6.85E+13	0.00E+00	0.00E+00	0.00E+00
Livestock										
Dairy	0.00E+00	1.75E+15	0.00E+00	6.89E+14	4.67E+13	0.00E+00	0.00E+00	2.13E+13	0.00E+00	0.00E+00
Beef	0.00E+00	0.00E+00	0.00E+00	1.38E+15	7.57E+13	0.00E+00	0.00E+00	2.84E+13	0.00E+00	0.00E+00
Horse	0.00E+00	0.00E+00	0.00E+00	1.19E+14	0.00E+00	0.00E+00	0.00E+00	2.73E+12	0.00E+00	0.00E+00
Swine	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E + 00	0.00E+00	0.00E+00
Sheep	0.00E+00	0.00E+00	0.00E+00	5.18E+12	0.00E+00	0.00E+00	0.00E+00	7.08E+10	0.00E+00	0.00E+00
Goat	0.00E+00	0.00E+00	0.00E+00	3.02E+11	0.00E+00	0.00E+00	0.00E+00	6.77E+09	0.00E+00	0.00E + 00
Poultry	0.00E+00	4.03E+13	0.00E+00	3.33E+14	0.00E+00	0.00E+00	0.00E+00	4.30E+12	0.00E+00	0.00E+00
Total	0.00E+00	1.79E+15	0.00E+00	2.53E+15	1.22E+14	0.00E+00	0.00E+00	5.68E+13	0.00E+00	0.00E+00
Wildlife										
Raccoon	2.01E+12	2.90E+13	1.05E+12	2.45E+14	2.55E+13	1.12E+11	1.54E+13	6.20E+12	0.00E+00	3.46E+14
Muskrat	7.92E+12	1.70E+13	7.83E+11	1.87E+14	1.16E+14	1.74E+11	7.83E+12	5.77E+12	0.00E+00	3.13E+14
Deer	2.46E+11	4.26E+12	1.37E+11	3.33E+13	2.15E+12	1.39E+10	1.32E+12	8.20E+11	0.00E+00	4.96E+13
Turkey	1.00E+08	1.04E+08	3.06E+07	5.00E+09	4.47E+08	2.37E+06	4.25E+08	1.34E+08	0.00E+00	2.74E+10
Goose	4.50E+09	4.42E+09	8.36E+08	4.88E+10	3.09E+10	1.36E+08	2.03E+09	1.54E+09	0.00E+00	8.17E+10
Duck	1.65E+08	1.62E+08	3.07E+07	1.79E+09	1.13E+09	4.98E+06	7.48E+07	5.65E+07	0.00E+00	3.00E+09
Unquantifiable	1.02E+12	5.03E+12	1.97E+11	4.65E+13	1.43E+13	3.00E+10	2.46E+12	1.28E+12	0.00E+00	7.09E+13
Total	1.12E+13	5.53E+13	2.16E+12	5.12E+14	1.58E+14	3.30E+11	2.70E+13	1.41E+13	0.00E+00	7.80E+14

Source	Fecal Coliform Load (cfu/yr)
<u>Human</u>	
Straight Pipes	1.32E+12
Total	1.32E+12
Livestock	
Dairy	6.66E+15
Beef	2.05E+15
Swine	4.07E+13
Goats	0.00E+00
Sheep	2.62E+12
Horse	1.45E+14
Poultry	1.22E+13
Total	8.91E+15
Wildlife	
Raccoon	3.35E+12
Muskrat	5.21E+13
Beaver	1.09E+10
Deer	1.05E+11
Turkey	3.44E+07
Goose	7.40E+09
Duck	4.13E+08
Total	5.56E+13

Table B.25	Existing annual loads from direct-deposition sources for the Upper
	Middle River impairment (subwatersheds 1-10).

Source	Fecal Coliform Load (cfu/yr)
Human	
Straight Pipes	7.46E+11
Total	7.46E+11
Livestock	
Dairy	0.00E+00
Beef	2.29E+14
Swine	0.00E+00
Goats	0.00E + 00
Sheep	1.03E+11
Horse	3.64E+13
Poultry	5.02E+12
Total	2.71E+14
Wildlife	
Raccoon	1.37E+12
Muskrat	2.24E+13
Beaver	4.25E+09
Deer	4.06E+10
Turkey	1.85E+07
Goose	3.19E+09
Duck	1.78E+08
Total	2.38E+13

Table B.26	Existing annual loads from direct-deposition sources for the Jennings
	Branch watershed (non-impaired) (subwatersheds 11-12).

Source	Fecal Coliform Load (cfu/yr)
Human	
Straight Pipes	3.06E+11
Total	3.06E+11
Livestock	
Dairy	4.11E+15
Beef	2.14E+14
Swine	0.00E+00
Goats	0.00E+00
Sheep	5.39E+11
Horse	4.11E+13
Poultry	1.49E+13
Total	4.38E+15
Wildlife	
Raccoon	9.87E+11
Muskrat	1.57E+13
Beaver	2.89E+09
Deer	3.04E+10
Turkey	1.06E+07
Goose	2.23E+09
Duck	1.24E+08
Total	1.67E+13

Table B.27	Existing annual loads from direct-deposition sources for the Moffett
	Creek impairment (subwatersheds 13-17).

Source	Fecal Coliform Load (cfu/yr)
<u>Human</u>	
Straight Pipes	4.37E+11
Total	4.37E+11
Livestock	
Dairy	3.06E+15
Beef	4.49E+13
Swine	0.00E+00
Goats	0.00E+00
Sheep	1.54E+12
Horse	4.77E+13
Poultry	1.27E+12
Total	3.16E+15
Wildlife	
Raccoon	1.03E+12
Muskrat	1.68E+13
Beaver	2.13E+09
Deer	2.68E+10
Turkey	6.88E+06
Goose	2.57E+09
Duck	1.43E+08
Total	1.79E+13

Table B.28	Existing annual loads from direct-deposition sources for the Lewis
	Creek impairment (subwatersheds 18-25).

Source	Fecal Coliform Load (cfu/yr)
Human	
Straight Pipes	7.49E+11
Total	7.49E+11
Livestock	
Dairy	3.56E+15
Beef	7.03E+14
Swine	0.00E+00
Goats	9.71E+10
Sheep	2.26E+12
Horse	1.07E+14
Poultry	1.58E+13
Total	4.39E+15
Wildlife	
Raccoon	1.92E+12
Muskrat	3.40E+13
Beaver	5.17E+09
Deer	5.41E+10
Turkey	1.50E+07
Goose	4.83E+09
Duck	2.70E+08
Total	3.60E+13

Table B.29	Existing annual loads from direct-deposition sources for the Middle
	River watershed (non-impaired) (subwatersheds 26-32).

Source	Fecal Coliform Load (cfu/yr)
Human	
Straight Pipes	2.17E+13
Total	2.17E+13
Livestock	
Dairy	1.19E+15
Beef	1.28E+14
Swine	0.00E+00
Goats	0.00E+00
Sheep	4.10E+11
Horse	9.57E+12
Poultry	5.89E+12
Total	1.33E+15
<u>Wildlife</u>	
Raccoon	2.55E+11
Muskrat	5.01E+12
Beaver	5.13E+06
Deer	6.33E+09
Turkey	1.59E+06
Goose	7.15E+08
Duck	3.99E+07
Total	5.27E+12

Table B.30	Existing annual loads from direct-deposition sources for the Polecat
	Draft impairment (subwatershed 33).

Source	Fecal Coliform Load (cfu/yr)
<u>Human</u>	
Straight Pipes	1.92E+11
Total	1.92E+11
Livestock	
Dairy	1.21E+16
Beef	7.43E+14
Swine	0.00E+00
Goats	0.00E+00
Sheep	2.38E+12
Horse	6.10E+13
Poultry	1.42E+13
Total	1.29E+16
<u>Wildlife</u>	
Raccoon	1.27E+12
Muskrat	2.41E+13
Beaver	4.06E+09
Deer	3.36E+10
Turkey	6.45E+06
Goose	3.44E+09
Duck	1.92E+08
Total	2.54E+13

Table B.31	Existing annual loads from direct-deposition sources for the Lower
	Middle River impairment (subwatersheds 34-38).

Source	Fecal Coliform Load (cfu/yr)
Human	
Straight Pipes	9.41E+11
Total	9.41E+11
Livestock	
Dairy	1.07E+15
Beef	6.37E+14
Swine	0.00E+00
Goats	1.32E+11
Sheep	2.25E+12
Horse	5.21E+13
Poultry	5.33E+12
Total	1.77E+15
Wildlife	
Raccoon	1.69E+12
Muskrat	3.20E+13
Beaver	8.41E+09
Deer	4.60E+10
Turkey	1.69E+07
Goose	4.65E+09
Duck	2.59E+08
Total	3.37E+13

Table B.32	Existing annual loads from direct-deposition sources for the South
	River impairment (subwatersheds 39-44).

APPENDIX C

Use of Antibiotic Resistance Analysis (ARA) to Identify Nonpoint Sources of Fecal Contamination in Several Augusta County Watersheds

Final Report

presented to

The Virginia Department of Conservation and Recreation

Bruce A. Wiggins

Department of Biology

James Madison University

Harrisonburg, VA, 22807

September 30, 2003

Abstract

The antibiotic resistance analysis (ARA) method of determining the sources of fecal contamination in natural waterways was applied to several watersheds in Augusta County. ARA involves isolation of indicator bacteria (enterococci) from different known fecal samples, as well as from unknown water samples. Source identification is accomplished by using the statistical method of discriminant analysis to classify each isolate extracted from water by comparing its antibiotic resistance patterns with the resistance patterns of isolates taken from known fecal samples. The potential sources of fecal contamination that were tested were human septic systems, domesticated animals such as cattle, dogs, poultry, and horses, and wild animals such as geese and deer. Twenty-four stations on Mossy Creek, Moffett Creek, Lewis Creek, Polecat Draft, Upper Middle River, Lower Middle River, and Upper South River were sampled monthly from September 2002 through August 2003. The samples were processed using ARA, and fecal coliform and *E. coli* counts were measured to evaluate the quantity of fecal material in the water. The results indicate that livestock sources are the major contributor to the fecal pollution in these watersheds, although human and wild sources were present at lower levels.

Introduction

Fecal contamination in natural waterways can lead to several problems, including an increased incidence of pathogens (3). Additionally, the increased levels of phosphorous and nitrogen in natural waterways due to fecal pollution can lead to algal blooms that, when degraded, result in deoxygenation of waterways (1). This situation is currently leading to a deterioration of the aquatic environment in the Chesapeake Bay. Fecal contamination in waterways has consistently been demonstrated by the presence of indicator organisms such as fecal coliforms or enterococci (3). However, differentiation of the sources of fecal contamination in waters receiving mixed agricultural and human waste is more difficult. Knowledge of the source of fecal contamination is important because humans are more susceptible to infections by pathogens found in human feces (3). Once the source is identified, steps can be taken to control the influx of fecal pollution.

Antibiotic resistant bacteria can develop in animals and humans as a result of treatment with antibiotics. Our laboratory has developed antibiotic resistance analysis (ARA), which uses enterococci as an indicator organism in identification of sources of fecal contamination (4). Enterococci are a group of gram-positive, catalase-negative cocci that hydrolyze esculin, and are capable of growing at 6.5% NaCl and at 45°C. Enterococci are used because they survive well in natural waters and can be isolated from all potential sources of fecal pollution (4, 5). In this approach, enterococci are isolated from known fecal sources, and grown on plates containing various

concentrations of 11 different antibiotics. The resulting antibiotic resistance patterns of each isolate are then analyzed using discriminant analysis, a multivariate statistical method. The results are pooled to form a "known library" of antibiotic resistance patterns from different fecal sources. Resistance patterns of isolates from natural waterways are then compared with this known library to determine the source(s) of fecal pollution in that waterway (4, 5, 7).

In this report, ARA, fecal coliform counts, and *E. coli* counts were used to draw conclusions about the source(s) of fecal contamination in several watersheds in Augusta County, Virginia. Mossy Creek is a tributary of the North River. Moffett Creek, Lewis Creek, Polecat Draft are tributaries of the Middle River. The North River, the Middle River, and the South River join together to form the South Fork of the Shenandoah River, which eventually flows into the Chesapeake Bay. The possible sources of fecal contamination in these watersheds have been identified as failing human septic systems, domesticated animals (including cattle, poultry, horses, and dogs) and wild animals (such as geese and deer). Twelve monthly sets of 24 samples were analyzed during the course of the project.

Materials and Methods

Sample Collection

Stream samples were collected in sterile 500-ml bottles by laboratory personnel and transported on wet ice to the laboratory. All stream samples were filtered within 6 hours of collection. Twenty-four sites (Table 1) were sampled each month (Table 2). A total of 288 stream samples were attempted to be collected. However, 15 samples could not be collected because the stream was dry, 7 samples could not be collected because the stream was frozen, 3 samples could not be collected because of mechanical problems with our field vehicle, and 1 sample was lost when the bottle was dropped.

Known fecal samples were collected by laboratory personnel, and were collected in sterile whirl-pack bags and transported in coolers to the lab. The numbers and sources of the known samples that were collected during the sampling period are shown in Table 3.

Isolation of enterococci

Varying amounts of fecal samples (0.1 - 0.5 g) were suspended in 50 ml of saline buffer. The sample was mixed vigorously before filtering through 0.45-µm pore-size filters. Varying volumes of stream samples were filtered using the same kind of filters. The filters were placed in 50-mm petri dishes containing 5 ml of m-Enterococcus agar. The petri dishes were incubated at 37°C for 48

hours. After incubation, isolated colonies were selected (23 for unknown samples, and 12 for known samples) and transferred to 96-microwell plates containing 0.2 ml of Enterococcosel broth. The microwell plates were incubated at 37°C for 48 hours. Esculin-negative isolates were not analyzed. The goal was to test 23 isolates from each sample, resulting in a precision of approximately 4%. Because of low counts, fewer isolates were analyzed for some samples.

Counting of Fecal Indicator Organisms

Fecal coliform (FC) counts were performed by filtering various volumes of all unknown stream samples, and of the suspended fecal samples (as described above). The filters were then placed in 50 mm petri-dishes containing 5 ml of m-FC agar. The petri dishes were incubated in an incubator at 35°C for 2 hours, and then transferred to a water bath at 44.5°C for 18 - 24 hours. After incubation, the number of blue colonies were enumerated and recorded.

Counts of *E. coli* were performed by filtering various volumes of all unknown stream samples, and of the suspended fecal samples (as described above). The filters were then placed in 50 mm petri-dishes containing 5 ml of modified mTEC agar (8). The petri dishes were incubated in an incubator at 35°C for 2 hours, and then transferred to a water bath at 44.5°C for 18 - 24 hours. After incubation, the number of red or magenta colonies were enumerated and recorded.

Enteroccocci counts were performed by filtering various volumes of all unknown stream samples, and of the suspended fecal samples (as described above). The filters were then placed in 50 mm petri-dishes containing 5 ml of mEnterococcus agar. The petri dishes were incubated at 37°C for 48 hours. After incubation, the number of red colonies were enumerated and recorded.

Antibiotics

Isolates from the 96-microwell plate were transferred to antibiotic-containing Trypticase Soy agar (TSA) plates using a sterile 48-prong replica-plater. Various concentrations of 11 antibiotics were used (37 concentrations total) (6). The isolates were also replica-plated to two TSA plates that did not contain antibiotics as a control. All TSA plates were incubated at 37°C for 24-48 hours. After incubation, the growth of each isolate on each concentration of each antibiotic was determined, and the resulting antibiotic resistance patterns were combined to form a library of known sources. For known samples, isolates with identical resistance patterns were discarded. Only unique isolates were used in the known library (Table 2).

Additional Libraries

In addition to the known isolates collected for this project, isolates from six other Virginia watersheds were used to create a larger, merged library. The watersheds used were: Blacks Run, Holmans Creek, Goose Creek, Long Glade Creek, Moores Creek, and Thumb Run.

Statistical Analysis

The results from resistance testing were entered into the SAS statistical program where they were analyzed using the DISCRIM procedure, which produces a classification table. The average rate of correct classification (ARCC) is the average rate that known isolates are correctly classified, and was used to measure the reliability of the known library. To cross-validate the known library, jackknife analyses were performed by removing all of the isolates from each sample, and classifying them using the resulting library. This simulates how well the library can classify "new" isolates, and is an estimation of the representativeness of the library. If a library is representative of a watershed, then isolates from new samples should be classified as well (on average) as the isolates of that type that are in the library.

The Minimum Detectable Percentage (MDP) was determined by averaging the expected frequency of misclassification (the percentages of other source types that were misclassified as that type) for each source type, and then adding three standard deviations to this average. The MDP estimates the average minimum percentage that can be detected in a stream sample (7).

Secondary discriminant analysis was also performed. For these analyses, a sub-library comprised of isolates from either Domestic or Wild sources was used to classify the unknown isolates that were classified into the "Domestic" and "Wild" categories, respectively.

Results

Library Construction

A library of the isolates obtained from eight types of known sources was constructed. As shown in Table 3, this Augusta County library consisted of 1,145 unique isolates. Unfortunately, because of the avian influenza outbreak, it was not possible for us to collect any poultry samples. Three-way discriminant analysis was performed on this library, with beef, dairy, sheep, horse, and dog isolates were pooled together as domestic, and duck and goose isolates were pooled together as wild. The ARCC for this library was 59% (Table 4). Jackknife analysis of this library resulted in an ARCC of 50% (not shown). This decrease suggests that the Augusta County library is not entirely representative of the watersheds it was collected from, and the absence of poultry isolates clearly underscores this. To resolve this lack, the isolates from the Augusta County library were combined with a much larger library comprised of 7,447 unique isolates collected in six other watersheds in

Virginia. Although larger libraries generally have slightly lower ARCCs, they are much more representative, and thus the confidence in the results is higher. When a three-way analysis was performed on this merged Virginia library, the ARCC was 55% (Table 5). The jackknife ARCC of this combined library was 53% (not shown), demonstrating that this library is very good at classifying new patterns. Because the merged library showed lower reductions in ARCC when cross-validated with jackknife analysis, this library was used to classify the unknown isolates.

Based on the merged library, the Minimum Detectable Percentage (MDP) was calculated. The expected frequency of misclassification was 20%, 24.5%, and 22.5% for human, domestic, and wild isolates, respectively. The mean of these is 22.3%, and the standard deviation is \pm 2.25%. Adding 3 standard deviations to the means yields a MDP value of 29%. This means that if the percentage of, for example, domestic isolates in a sample exceeds 29%, we can be confident that these are actually domestic isolates, and not human or wild isolates that have been misclassified.

Levels of Indicator Organisms

A summary of the results for each sub-watershed is shown in Table 6, and the complete data are shown in Tables 7-13. Fifty-nine of the 266 samples for which counts were obtained had FC levels above the standard of 1000 FC/100 ml. The geometric mean of the FC counts over the 12 months exceeded 200 FC/100 ml at 13 of the 24 stations. The highest average counts were observed at Station 12 on Lewis Creek and at Station 28 on Back Creek. Fecal coliform counts were very similar to *E. coli* counts in the water samples. The correlation between the logs of the FC and *E. coli* counts was 86% (Figure 1). A paired t-test between the two sets of counts showed no significant difference (p = 0.19).

Fecal coliform, *E. coli*, and enterococci counts were also measured in the known fecal samples. The levels of FC and E. coli were approximately equal in all sources (Table 3). Generally, enterococci were found at lower levels than the coliforms, with the exception of geese and ducks, where they were approximately the same. The log of FC counts ranged from 3.91 cells/ml (humans) to 7.08 cells/g (dogs). Human septic samples had the lowest total counts, but this was because the fecal material was diluted in water.

Three-way Classification of Unknown Isolates: Human vs. Domestic vs. Wild

Using the merged library, the stream samples were classified. A summary of the results for each watershed is shown in Table 14, and the complete data are shown in Tables 15-21.

Mossy Creek. Pollution from domestic sources was the major contributor to all 4 stations on Mossy Creek. Every sample but one had levels of domestic sources above the MDP. Wild sources were present at levels above the MDP during the summer months at Stations 1, 2, and 4. Human pollution was detected at levels above the MDP occasionally, with the most occurring during the winter months at Station 1.

Moffett Creek. Pollution from domestic sources was the major contributor to all 4 stations on Moffett Creek. Every sample but one had levels of domestic sources above the MDP. Wild sources were present at levels above the MDP during the summer months at Stations 6 and, to a lesser extent, at Station 10. Human pollution was only occasionally detected at levels above the MDP, with the most occurring at Station 10.

Upper Middle River. Pollution from domestic sources was the major contributor to all 6 stations on Upper Middle River. Fifty-eight out of sixty-six samples had levels of domestic sources above the MDP. Wild sources were present at high levels at Stations 26 and 27. Human pollution was detected at levels above the MDP in 4 of 8 samples at Station 28. High levels of Human sources were present in January and February.

Middle Middle River. Pollution from domestic sources was the major contributor to both stations on Middle Middle River. Only two samples had levels of domestic sources below the MDP. Wild sources were present at high levels at Station 9. Human pollution was detected at levels above the MDP only occasionally, with the most occurring at Station 15.

Lewis Creek. Pollution from domestic sources was a major contributor to the stations on Lewis Creek. Twenty-five out of thirty-two samples had levels of domestic sources above the MDP. Wild sources were present at levels above the MDP in ten samples. Human pollution was a significant source at Station 12, with 8 of 12 samples with levels above the MDP.

Lower Middle River. Pollution from domestic sources was the major contributor to all 3 stations on Lower Middle River. Twenty-three out of thirty samples had levels of domestic sources above the MDP. Wild sources were present at high levels at Stations 17 and 23. Human pollution was detected at levels above the MDP only occasionally.

Upper South River. Pollution from domestic sources was the major contributor to both stations on Upper South River. Only two samples had levels of domestic sources below the MDP. Wild sources were present at high levels in 10 of 24 samples. Human pollution was detected in just 2 of 24 samples.

Secondary Classification of Unknown Isolates

To determine which of the domestic and wild sources were present in the samples, secondary discriminant analyses were performed.

Domestic sources. For this analysis, a sub-library comprised of known isolates from Domestic sources (grouped into Livestock, Poultry, and Dog) was used to classify the unknown isolates that were classified into the "Domestic" category. Of the 2,252 unknown isolates that were initially classified as Domestic, 2,122 of them (94%) were classified into the Livestock group.

Wild sources. For this analysis, a sub-library comprised of known isolates from Wild sources (grouped into Bird and Mammal) was used to classify the unknown isolates that were classified into the "Wild" category. Of the 1,194 unknown isolates that were initially classified as Wild, 657 of them (55%) were classified into the Bird group, and 537 were classified as Mammal (45%). All Stations had approximately equal proportions of each source.

Conclusions

These results show that domestic sources, primarily livestock, are the major source of pollution in these Augusta County watersheds. Every station showed levels of domestic animal fecal pollution at percentages above the MDP, and of this, 94% was classified as coming from livestock. Human fecal pollution was detected at several stations, but only two stations had average levels above the MDP. Fecal pollution from wild sources was more common than human, with seven stations showing average levels above the MDP. Wild sources were evenly split between birds and mammals.

More than half of the stations had fecal coliform counts that were above the Virginia standard of a geometric mean of 200 FC/100 ml. All but three stations had one or more monthly samples that exceeded the single-sample limit of 1000 FC/100 ml. Fecal coliform counts and *E. coli* counts correlated well (86%) and were not significantly different from one another.

<u>Limitations of this study</u>. The water samples analyzed in this study were collected over a twelve-month period. There may be year-to-year variation in the numbers and proportions of sources that were not included in the time frame of this study. Additionally, keep in mind that all BST methods, including ARA, are still being developed, and there are no "standard methods" yet for any method. There are many variables that determine the sources of fecal bacteria in water, and many of them are poorly understood.

Acknowledgments

This work was supported by a grant from the Virginia Department of Conservation and Recreation. Special thanks to Bill Keeling for coordinating the project, and to Philip Cash, Scott Dart, Shellie Davis, David Garrison, Jacquie McCarthy, Peter Rosanelli, and Amy Varner for technical assistance and laboratory analysis.

References

1) Alliance for the Chesapeake Bay. 1993. Nutrients and the Chesapeake: Refining the bay cleanup effort.

- 2) Hagedorn, C. Bacterial source tracking (BST): Identifying sources of fecal pollution. http://www.bsi.vt.edu/biol_4684/BST/BST.html
- **3)** Sinton, L. W., A. M. Donnison, and C. M. Hastie. 1993. Faecal streptococci as faecal pollution indicators: a review. II. Sanitary significance, survival, and use. N. Z. J. Mar. Freshwater Res. 27:117-137.
- **4)** Wiggins, B. A. 1996. Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution. Appl. Environ. Microbiol. 63:3997-4002.
- 5) Wiggins, B. A., R. W. Andrews, R. A. Conway, C. L. Corr, E. J. Dobratz, D. P. Dougherty, J. R. Eppard, S. R. Knupp, M. C. Limjoco, J. M. Mettenburg, J. M. Rinehardt, J. Sonsino, R. L. Torrijos, and M. E. Zimmerman. 1999. Use of Antibiotic Resistance Analysis to Identify Nonpoint Sources of Fecal Pollution. Appl. Environ. Microbiol. 65:3483-3486.
- 6) Wiggins, B. A., 2003. Procedures and protocols for antibiotic resistance analysis (ARA). Laboratory for Riparian Microbiology, James Madison University.
- 7) Wiggins, B. A., P. W. Cash, W. S. Creamer, S. E. Dart, P. P. Garcia, T. M. Gerecke, J. Han, B. L. Henry, K. B. Hoover, E. L. Johnson, K. C. Jones, J. G. McCarthy, J. A. McDonough, S. A. Mercer, M. J. Noto, H. Park, M. S. Phillips, S. M. Purner, B. M. Smith, E. N. Stevens, and A. K. Varner. 2003. Use of Antibiotic Resistance Analysis for Representativeness Testing of Multiwatershed Libraries. Appl. Environ. Microbiol. 69:3399-3405.
- 8) USEPA. 2000. Improved enumeration methods for the recreational water quality indicators: Enterococci and *Escherichia coli*. EPA/821/R-97/004.

TMDL Development

Site #	Description	Latitude	Longitude
	Mossy Creek (HU B19)		
4	@ Route 731	38°20.499'	79°05.001'
3	@ Route 613	38°21.113'	79°02.923'
2	@ Route 747	38°21.448'	79°01.851'
1	@ Route 727	38°23.137'	79°00.904'
	Moffett Creek (HU B13)		
5	@ Route 42	38°17.613'	79°07.525'
6	Elk Run @ Route 835	38°15.740'	79°06.356'
7	@ Route 733	38°15.708'	79°06.072'
10	@ Route 732	38°14.661'	79°05.072'
	Upper Middle River (HU B10)		
31	@ Route 602	38°04.929'	79°14.812'
27	@ Route 705	38°08.509'	79°13.114'
30	Back Creek @ Route 841	38°06.430'	79°12.838'
28	Back Creek @ Route 707	38°08.601'	79°11.468'
26	@ Route 720	38°11.472'	79°09.856'
24	Buffalo Branch @ Route 703	38°11.127'	79°13.802'
	Middle Middle River (HU B12)		
9	@ Route 732	38°14.404'	79°06.381'
15	@ Route 11	38°12.471'	79°00.161'
	Lewis Creek (HU B12)		
34	@ Route 252	38°08.151'	79°05.252'
12	@ Route 254	38°09.102'	79°03.424'
14	@ Route 612	38°10.971'	78°58.536
	Lower Middle River (HU B15)		
22	@ Route 16	38°12.535'	78°55.613'
23	Polecat Draft @ Route 608	38°13.687'	78°58.019'
17	@ Route 769	38°15.717'	78°51.770'
	Upper South River (HU B30)		
38	@ Route 662	38°00.418'	79°09.666'
36	@ Route 652	38°01.356'	79°05.639'

Table 1. Location and description of sampling sites. Sites are listed from upstream to downstream.

Table 2. Dates of sampling of the sites in Augusta County. All samples were analyzed on the day they were collected. Set 1: sites # 9, 24, 26, 27, 28, 30, 31, and 34. Set 2: sites # 1, 2, 3, 4, 5, 6, 7, and 10. Set 3: sites # 12, 14, 15, 17, 22, 23, 36, and 38. Due to weather on some days, some stations were not sampled.

Month	Date Set 1 Collected	Date Set 2 Collected	Date Set 3 Collected
September 2002	9/3	9/13	9/25
October 2002	10/2	10/21	10/30
November 2002	11/4	11/14	11/25
December 2002	12/9	12/17	12/29
January 2003	1/7	1/15	1/24
February 2003	2/5	2/24	2/28
March 2003	3/12	3/18	3/27
April 2003	4/9	4/16	4/28
May 2003	5/7	5/15	5/28
June 2003	6/11	6/17	6/23
July 2003	7/9	7/16	7/24
August 2003	8/15	8/21	8/28

Table 3. Numbers of known fecal samples and isolates collected for this study, and geometric means and SD of the numbers of indicator organisms in each source.

Source	No. of Samples	Total No. of Isolates	No. of Unique	Log #FC	Log #E. coli	Log #ENT
	•		Isolates			
Beef	21	226	173	4.83 ± 0.60	4.81 ± 0.61	3.71 ± 0.51
Dairy	24	221	150	4.78 ± 0.64	4.71 ± 0.71	3.90 ± 0.74
Horse	6	67	47	4.12 ± 0.59	4.03 ± 0.70	3.61 ± 1.18
Dog	8	90	59	7.08 ± 0.72	7.09 ± 0.79	6.23 ± 0.96
Sheep	7	81	47	5.15 ± 0.18	5.05 ± 0.16	4.30 ± 0.57
Goose	27	352	206	6.59 ± 1.61	6.50 ± 1.31	7.04 ± 1.47
Duck	3	24	16	6.25 ± 0.71	6.18 ± 0.67	6.23 ± 0.55
Human	54	594	447	3.91 ± 0.49	3.79 ± 0.50	3.32 ± 0.64
Totals	150	1,655	1,145			

Table 4. Classification of 1,145 unique isolates of enterococci from known human, domestic, and wild sources in Augusta County, Virginia. Correctly-classified isolates are shown in bold. The ARCC for this analysis is 59%.

	Number (and Percent) of Isolates Classified As:						
SOURCE	HUMAN DOMESTIC WILD						
HUMAN $(n = 447)$	288 (64)	88 (20)	71 (16)				
DOMESTIC $(n = 476)$	84 (18)	235 (49)	157 (33)				
WILD (n = 222)	27 (12)	57 (26)	138 (62)				

Table 5. Classification of 8,592 unique isolates of enterococci from known human, domestic, and wild sources in Virginia. Correctly-classified isolates are shown in bold. The ARCC for this analysis is 55%.

	Number (and Percent) of Isolates Classified As:							
SOURCE	HUMAN	HUMAN DOMESTIC WILD						
HUMAN $(n = 2,573)$	1,570 (61)	544 (21)	459 (18)					
DOMESTIC $(n = 4,512)$	917 (20)	2,390 (53)	1,205 (27)					
WILD (n = 1,507)	299 (20)	422 (28)	786 (52)					

Table 6. Summary of indicator counts for fecal coliforms (FC), *E. coli*, and enterococci (ENT) at each sampling site. Values are the geometric means of the monthly levels. Fecal coliform (FC) values in bold are above 200 cells/100 ml. *E. coli* (EC) values in bold are above 126 cells/100 ml.Sites are listed from upstream to downstream.

Site #	Description	FC	E. coli	ENT
	Mossy Creek (HU B19)			
4	@ Route 731	97	78	178
3	@ Route 613	315	329	269
2	@ Route 747	198	215	236
1	@ Route 727	413	302	325
	Moffett Creek (HU B13)			
5	@ Route 42	145	168	129
6	Elk Run @ Route 835	186	237	209
7	@ Route 733	188	148	210
10	@ Route 732	253	188	249
	Upper Middle River (HU B10)			
31	@ Route 602	670	709	214
27	@ Route 705	356	368	166
30		249	249	155
	Back Creek @ Route 841	-		
28	Back Creek @ Route 707	1,019	868	600
26	@ Route 720	160	150	133
24	Buffalo Branch @ Route 703	13	9	22
	Middle Middle River (HU B12)			
9	@ Route 732	147	110	117
15	@ Route 11	56	53	89
	Lewis Creek (HU B12)			
34	@ Route 252	204	139	122
12	@ Route 254	1,471	559	649
14	@ Route 612	325	219	220
	Lower Middle River (HU B15)			
22	@ Route 16	103	165	204
22		333	284	338
17	@ Route 769	121	103	162
	Upper South River (HU B30)			
38	@ Route 662	646	442	480
36	@ Route 652	315	269	283

Table 14. Summary of three-way ARA classification into human, domestic, or wild sources at each sampling site. Values are the averages of the monthly percentages. Values in bold are above the MDP of 29%. Sites are listed from upstream to downstream.

Site #	Description	Human	Domestic	Wild
	Mossy Creek (HU B19)			
4	@ Route 731	12	68	20
3	@ Route 613	20	63	17
2	@ Route 747	16	58	25
1	@ Route 727	17	55	28
	Moffett Creek (HU B13)			
5	@ Route 42	15	64	21
6	Elk Run @ Route 835	13	57	30
7	@ Route 733	15	66	19
10	@ Route 732	21	58	20
	Upper Middle River (HU B10)			
31	@ Route 602	17	55	28
27	@ Route 705	19	52	29
30	Back Creek @ Route 841	19	57	24
28	Back Creek @ Route 707	29	49	22
26	@ Route 720	20	45	35
24	Buffalo Branch @ Route 703	26	51	24
	Middle Middle River (HU B12)			
9	@ Route 732	18	50	32
15	@ Route 11	23	53	24
	Lewis Creek (HU B12)			
34	@ Route 252	24	48	27
12	@ Route 254	39	41	19
14	@ Route 612	21	48	31
	Lower Middle River (HU B15)			
22	@ Route 16	17	59	24
23	Polecat Draft @ Route 608	20	41	39
17	@ Route 769	13	54	33
	Upper South River (HU B30)			
38	@ Route 662	19	57	24
36	@ Route 652	15	57	28

APPENDIX D

Finalized GWLF Transport Input for Simulating Existing Conditions

watershed rarameters for Existing Conditions						
GWLF Watershed Parameter	Units	Moffett Creek	Mill Creek			
Recession Coefficient	Day ⁻¹	0.0384	0.0484			
Seepage Coefficient	Day ⁻¹	0.02	0.02			
Sediment Delivery Ratio		0.13	0.114			
Unsaturated Water Capacity	(cm)	13	13			
Erosivity Coefficient (April-Sept.)		0.25	0.25			
Erosivity Coefficient (OctMar)		0.06	0.06			
% developed land	(%)	0.20	0.69			
Livestock density	(AU/ac)	0.1711	0.1170			
Area-weighted soil erodibility		0.297	0.312			
Area weighted runoff curve number		68.44	70.19			
Total Stream Length	(m)	24770.0	69541.0			
Mean channel depth	(m)	0.95	1.07			

Table D.1	Moffett Creek and Reference Watershed Mill Creek GWLF
	Watershed Parameters for Existing Conditions

Table D.2Moffett Creek and Reference Watershed Mill Creek GWLF Monthly
Evaporation Cover Coefficients for Existing Conditions

		-						-				
Watershed	Apr	May	Jun	Jul*	Aug	Sep	Oct	Nov	Dec	Jan*	Feb	Mar
Moffett Cr.	0.30	0.60	1.10	1.10	1.10	0.65	0.65	0.50	0.50	0.50	0.40	0.40
Mill Cr.	0.5	0.65	0.80	0.77	0.76	0.74	0.72	0.66	0.65	0.65	0.65	0.45

Table D.3	Moffett Creek and Reference Watershed Mill Creek GWLF Landuse
	Parameters for Existing Conditions.

Landuse	Moffe	tt Creek	Mill	Creek
Category	CN	KLSCP	CN	KLSCP
LDR-PER	65.97	0.0014	71.35	0.0018
MDR-PER		0.0000		0.0000
HDR-PER		0.0000		0.0000
COM-PER	69.37	0.0014	64.28	0.0015
Transitional	85.49	0.0667	83.89	0.0750
Forest	64.35	0.0022	66.88	0.0009
Urban Grass		0.0000		0.0000
Pasture 1	82.28	0.2058	83.89	0.1009
Pasture 2	73.68	0.0974	75.99	0.0466
Pasture 3	67.08	0.0161	70.09	0.0087
High-tillage	80.34	0.2698	81.02	0.3063
Low-tillage	77.28	0.0737	78.23	0.0837
LDR-IMP	98.00	0.0000	98.00	0.0000
MDR-IMP		0.0000		0.0000
HDR-IMP		0.0000		0.0000
COM-IMP	98.00	0.0000	98.00	0.0000

Landuse Category			
	Impaired	Original	Reference (area-adjusted)
	Moffett Creek	Mill Creek	Mill Creek (x 0.6678)
LDR-PER	10.36	35.53	23.73
MDR-PER	0.00	0.00	0.00
HDR-PER	0.00	0.00	0.00
COM-PER	0.35	0.60	0.40
Transitional	0.44	19.26	12.86
Forest	3,253.09	6,136.72	4,098.10
Urban Grass	0.00	0.00	0.00
Pasture 1	502.71	778.78	520.07
Pasture 2	1,173.00	1,168.18	780.11
Pasture 3	1,675.72	1,946.96	1,300.18
High-tillage	50.83	112.49	75.12
Low-tillage	202.06	67.21	44.88
LDR-IMP	2.75	34.14	22.80
MDR-IMP	0.00	0.00	0.00
HDR-IMP	0.00	0.00	0.00
Com-IMP	0.09	0.57	0.38

Table D.4Area Adjustment for Moffett Creek TMDL Reference Watershed (ha)
Mill Creek.

Table D.5GWLF Watershed Parameters for Upper Middle River and Reference
Watershed Hays Creek Existing Conditions.

GWLF Watershed Parameter	Units	Upper Middle River	Hays
Recession Coefficient	Day ⁻¹	0.0384	0.0369
Seepage Coefficient	Day ⁻¹	0.02	0.02
Sediment Delivery Ratio	-	0.11	0.09
Unsaturated Water Capacity	(cm)	13	15
Erosivity Coefficient (April-		0.25	0.25
Sept.)			
Erosivity Coefficient (Oct		0.06	0.06
Mar)			
% developed land	(%)	0.2	0.13
Livestock density	(AU/ac)	0.1618	0.1373
Area weighted soil erodibility		0.308	0.289
Area weighted runoff curve		69.25	61.80
number			
Total Stream Length	(m)	26,324	96,087
Mean channel depth	(m)	1.12	1.30

	GWLF Mo and Refere	v	-						Midd	le Rive	r	
Watershed	Apr	May	Jun	Jul*	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mai

Watershed	Apr	May	Jun	Jul*	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Upper Middle River	0.30	0.60	1.10	1.10	1.10	0.65	0.65	0.50	0.50	0.50	0.40	0.40
Hays	0.60	0.60	0.90	0.90	0.90	0.80	0.75	0.70	0.70	0.70	0.70	0.60

Table D.7	Upper Middle River and Reference Watershed Hays Creek GWLF
	Landuse Parameters for Existing Conditions.

		8		
Landuse Category	Upper Mi	iddle River	Н	ays
	CN	KLSCP	CN	KLSCP
LDR-PER	65.97	0.00158	62.859	0.00242
MDR-PER		0.00000		0
HDR-PER		0.00000		0.00157
COM-PER		0.00000		0
Transitional	85.49	0.19586	85.93	0.26909
Forest	64.35	0.00177	58.38	0.00289
Urban Grass		0.00000		0
Pasture 1	82.28	0.14143	84.69	0.26848
Pasture 2	73.68	0.06694	70.74	0.129499
Pasture 3	67.08	0.01226	63.26	0.021421
High-tillage	80.34	0.20766	81.00	0.34318
Low-tillage	77.28	0.05675	77.01	0.09378
LDR-IMP	98.00	0.00000	98.00	0.00000
MDR-IMP		0.00000		0.00000
HDR-IMP		0.00000		0.00000
COM-IMP		0.00000		0.00000

Table D.8Area Adjustment for Upper Middle River TMDL Reference
Watershed (ha) Hays Creek.

Landuse Category	Up	per Middle River TMI	DL
	Impaired	Original	Reference
	Upper Middle River	Hays	Hays (x 0.5973)
LDR-PER	20.55	18.27	10.91
MDR-PER	0.00	0.00	0.00
HDR-PER	0.00	1.29	0.77
COM-PER	0.00	0.00	0.00
Transitional	28.46	13.39	8.00
Forest	4,592.51	10,672.63	6,374.76
Urban Grass	0.00	0.00	0.00
Pasture 1	1,065.74	0.00	0.00
Pasture 2	2,486.73	2,389.57	1,427.29
Pasture 3	3,552.48	7,168.73	4,281.88
High-tillage	111.04	61.61	36.80
Low-tillage	433.29	264.36	157.90
LDR-IMP	5.46	7.10	4.24
MDR-IMP	0.00	0.00	0.00
HDR-IMP	0.00	0.50	0.30
Com-IMP	0.00	0.00	0.00

GWLF Watershed Parameter	Units	Christians Creek	Opequon Creek
Recession Coefficient	Day ⁻¹	0.0384	0.0655
Seepage Coefficient	Day ⁻¹	0.02	0.02
Sediment Delivery Ratio	-	0.08	0.104
Unsaturated Water Capacity	(cm)	13	13
Erosivity Coefficient (April-Sept.)		0.25	0.25
Erosivity Coefficient (OctMar)		0.06	0.06
% developed land	(%)	4.3	4.6
Livestock density	(AU/ac)	0.1617	0.0769
Area weighted soil erodibility		0.307	0.310
Area weighted runoff curve number		70.29	74.59
Total Stream Length (Watershed)	(m)	68,459	50,824
First Order Stream Length	(m)	44,824	32,491
Mean channel depth	(m)	1.55	1.15

Table D.9	Christians Creek and Reference Watershed Opequon Creek GWLF
	Watershed Parameters for Existing Conditions

Table D.10	Christians Creek and Reference Watershed Opequon GWLF
	Monthly Evaporation Cover Coefficients for Existing Conditions

Watershed	Apr	May	Jun	Jul*	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Christians Creek	0.30	0.60	01.10	1.10	1.10	0.65	0.65	0.50	0.50	0.50	0.40	0.40
Opequon Creek	0.82	0.83	0.85	0.85	0.85	0.77	0.76	0.75	0.75	0.75	0.77	0.8

Table D.11	Christians Creek and Reference Watershed Opequon Creek GWLF
	Landuse Parameters for Existing Conditions.

		0			
Londuce Cotecowy	Christi	ans Creek	Opequon Creek		
Landuse Category	CN	KLSCP	CN	KLSCP	
LDR-STR-COR-PER	61.00	0.002186	74.86	0.003349	
MDR-STR-COR-PER		0.000000		0.000000	
HDR-STR-COR-PER		0.000000	74.60	0.001916	
COM-STR-COR-PER	63.60	0.001754	75.25	0.001916	
Trans STR-COR		0.00000	86.00	0.023648	
Forest - COR	58.45	0.001172	71.81	0.002319	
Urban Grass - COR		0.000000	78.02	0.000748	
Pasture 1- STR-COR	77.72	0.0429180	86.22	0.144381	
Pasture 2- STR-COR	66.68	0.0203150	79.37	0.06834	
Pasture 3 – STR-COR	58.45	0.003720	74.44	0.012513	
High till- STR-COR	75.30	0.110575	83.52	0.314014	
Low till – STR-COR	71.00	0.030216	81.52	0.08581	
LDR- STR-COR-IMP	98.00	0.000364	98.00	0.000558	
MDR - STR-COR-IMP		0.000000	98.00	0.00000	
HDR- STR-COR-IMP		0.000000		0.000000	
COM-STR-COR-IMP	98.00	0.000292	98.00	0.000319	

opequ	on creek.	Obstations Oscals TM	DI
Landuse Category	Impaired	Christians Creek TM Original	DL Reference
Lunuise Curegory	Christians Creek	Opequon Creek	Opequon Creek x 2.029
LDR-PER-COR	0.118	10.740	21.791
MDR-PER-COR	0.000	0.000	0.000
HDR-PER-COR		0.279	0.565
COM-PER-COR	0.261	1.813	3.679
Transitional-COR	0.000	0.111	0.224
Forest-COR	84.444	149.438	303.210
Urban Grass-COR	0.000	5.092	10.331
Pasture 1-COR	41.717	0.799	1.620
Pasture 2-COR	97.339	18.662	37.865
Pasture 3-COR	139.055	145.586	295.394
High-tillage-COR	2.222	6.328	12.839
Low-tillage-COR	6.667	4.852	9.845
LDR-IMP-COR	0.104	6.306	12.794
MDR-IMP-COR	0.000	0.000	0.000
HDR-IMP-COR	0.000	0.164	0.332
COM-IMP-COR	0.295	1.065	2.161

Table D.12Area Adjustment for Christians Creek TMDL Reference Watersheds
Opequon Creek.

APPENDIX E

Impairment	Subshed #s	BMP ;	MP # of BMPs Description		Type of Implementation	Extent of Implementation
Upper Middle	1-10	FR-1	1	Reforestation of Erodible Crop and Pastureland	ACRES	4.00
		FR-3	3	Woodland Buffer Filter Area	ACRES	10.40
		SL-1	1	Permanent Vegetative Cover on Cropland (State)	ACRES	55.80
		SL-11	1	Permanent Vegetative Cover on Critical Areas	ACRES	1.00
		SL-6	10	Grazing Land Protection	LINEAR FEET	14,035.00
		SL-8B	25	Small grain cover crop for Nutrient Management	ACRES	707.70
		SP-1	1	Nutrient Management Plan Writing	ACRES	297.00
		WP-2	2	Stream Protection	LINEAR FEET	4,385.00
		WP-4	8	Animal Waste Control Facility	SYSTEM	8.00
		WP-4C	3	Composter Facility	SYSTEM	3.00
Jennings Branch	11-12	FR-1	2	Reforestation of Erodible Crop and Pastureland	ACRES	39.00
		SL-6	1	Grazing Land Protection	ACRES	212.00
		SL-8B	3	Small grain cover crop for Nutrient Management	ACRES	41.40
		WP-4	3	Animal Waste Control Facility	SYSTEM	3.00
		WP-4C	1	Composter Facility	SYSTEM	1.00
Moffett Creek	13-17	FR-1	3	Reforestation of Erodible Crop and Pastureland	ACRES	53.00
		NM-3	5	Woodland Buffer Filter Area	ACRES	196.40
		SL-6	2	Grazing Land Protection	ACRES	109.70
		SL-8B	16	Small grain cover crop for Nutrient Management	ACRES	435.40
		WP-2	3	Stream Protection	LINEAR FEET	584.00
		WP-4	4	Animal Waste Control Facility	SYSTEM	4.00
		WP-4C	1	Composter Facility	SYSTEM	1.00

Table E.1Best Management Practices Listed by Impairment

Impairment	Subshed #s	Subshed #s BMP		Description	Type of	Extent of
•				•		Implementation
Lewis Creek	18-25	FR-1	2	Reforestation of Erodible Crop and Pastureland	ACRES	18.00
		SL-11	1	Permanent Vegetative Cover on Critical Areas	ACRES	1.00
		SL-6	3	Grazing Land Protection	ACRES	98.00
		WP-2	1	Stream Protection	LIN FT	240.00
Middle River	26-32	FR-1	3	Reforestation of Erodible Crop and Pastureland	ACRES	44.00
		FR-3	3	Woodland Buffer Filter Area	ACRES	9.90
		NM-1	2	Nutrient Management Plan Writing	ACRES	42.70
		SL-1	2	Permanent Vegetative Cover on Cropland (State)	ACRES	37.00
		SL-3	1	Woodland Buffer Filter Area	ACRES	18.50
		SL-6	10	Grazing Land Protection	LINEAR FEET	1,733.50
		SL-8B	17	Small grain cover crop for Nutrient Management	ACRES	302.90
		WP-2	2	Stream Protection	LINEAR FEET	7,040.00
		WP-2A	1	Streambank Stabilization	LINEAR FEET	160.00
		WP-3	1	Sod Waterway	ACRES	1.00
		WP-4	8	Animal Waste Control Facility	SYSTEM	8.00
		WP-4C	3	Composter Facility	SYSTEM	3.00
Polecat Draft	33	NM-3	2	Woodland Buffer Filter Area	ACRES	51.00
		NM-4	1	Late Winter Split Application of Nitrogen on Small Grain	ACRES	20.00
		SL-3	1	Woodland Buffer Filter Area	ACRES	129.00
		SL-6	1	Grazing Land Protection	ACRES	20.00
		SL-8B	4	Small grain cover crop for Nutrient Management	ACRES	83.00
		WP-4	1	Animal Waste Control Facility	SYSTEM	1.00
		WP-4C	1	Composter Facility	SYSTEM	1.00

Table E.1 Best Management Practices Listed by Impairment (cont.) Impairment Subshed #s BMP # of BMPs Description

Table E.I	Dest Management i lactices Elsted by impartment (cont.)								
Impairment	Subshed #s	BMP	# of BMPs	Description	Type of Implementation	Extent of Implementation			
Lower Middle	34-38	FR-1	1	Reforestation of Erodible Crop and Pastureland	ACRES	25.00			
		NM-1	1	Nutrient Management Plan Writing	ACRES	109.00			
		NM-3	2	Woodland Buffer Filter Area	ACRES	199.00			
		NM-4	1	Late Winter Split Application of Nitrogen on Small Grain	ACRES	63.00			
		SL-1	4	Permanent Vegetative Cover on Cropland (State)	ACRES	79.00			
		SL-11	1	Permanent Vegetative Cover on Critical Areas	ACRES	1.00			
		SL-3	3	Woodland Buffer Filter Area	ACRES	149.00			
		SL-6	11	Grazing Land Protection	ACRES	7,496.90			
		SL-8B	21	Small grain cover crop for Nutrient Management	ACRES	602.00			
		WP-2	1	Stream Protection	LINEAR FEET	1,000.00			
		WP-3	4	Sod Waterway	ACRES	8.86			
		WP-4	15	Animal Waste Control Facility	SYSTEM	15.00			
		WP-4B	3	Loafing Lot Management System	SYSTEM	202.00			
		WP-4C	2	Composter Facility	SYSTEM	2.00			

TMDL Development

		Th
		MDL
<u>1</u>		De
		Developmen
		pm
		ent

Subshed #s	BMP	# of BMPs	Description	Type of Implementation	Extent of Implementation
39-44	FR-1	2	Reforestation of Erodible Crop and Pastureland	ACRES	26.00
	NM-1	7	Nutrient Management Plan Writing	ACRES	433.90
	NM-3B	1	Manure Application to Corn using Pre-Sidedress Nitrate Test to Determine Need for Sidedress Nitrogen	ACRES	45.00
	SL-11	1	Permanent Vegetative Cover on Critical Areas	ACRES	1.00
	SL-3	3	Woodland Buffer Filter Area	ACRES	87.00
	SL-6	7	Grazing Land Protection	LINEAR FEET	2,557.00
	SL-8B	9	Small grain cover crop for Nutrient Management	ACRES	277.10
	SP-1	1	Nutrient Management Plan Writing	ACRES	65.00
	SP-2	1	Soil Analysis for Nutrient Management Plan Writing	ACRES	65.00
	SP-3	1	Sidedress Application of N on Corn	ACRES	65.00
	WP-3	1	Sod Waterway	ACRES	1.00
	WP-4	3	Animal Waste Control Facility	SYSTEM	3.00
	WP-4C	2	Composter Facility	SYSTEM	2.00

Table E.1 **Best Management Practices Listed by Impairment (cont.)**

Subshed #s

Impairment

South River

APPENDIX F

EXCERPT FROM UCI FILE USED FOR MODELING

66	6_Residential	1	1	0	0	0	0
67	6_Unimproved Pasture	1	1	0	0	0	0
68	6_Water	1	1	0	0	0	0
69	6_Woodland	1	1	0	0	0	0
70	7_Livestock Access	1	1	0	0	0	0
71	7 Commercial and Ser	1	1	0	0	0	0
	—						
72	7_Cropland	1	1	0	0	0	0
73	7_Farmstead	1	1	0	0	0	0
74	7_Improved Pasture	1	1	0	0	0	0
76	7_Residential	1	1	0	0	0	0
	_						
77	7_Unimproved Pasture	1	1	0	0	0	0
79	7_Woodland	1	1	0	0	0	0
80	8_Livestock Access	1	1	0	0	0	0
83	8_Farmstead	1	1	0	0	0	0
	—						
84	8_Improved Pasture	1	1	0	0	0	0
86	8_Residential	1	1	0	0	0	0
87	8_Unimproved Pasture	1	1	0	0	0	0
89	8_Woodland	1	1	0	0	0	0
	_						
90	9_Livestock Access	1	1	0	0	0	0
91	9_Commercial and Ser	1	1	0	0	0	0
92	9_Cropland	1	1	0	0	0	0
93	9 Farmstead	1	1	0	0	0	0
	—						
94	9_Improved Pasture	1	1	0	0	0	0
95	9_Livestock Operatio	1	1	0	0	0	0
96	9_Residential	1	1	0	0	0	0
97	9_Unimproved Pasture	1	1	0	0	0	0
98	9_Water	1	1	0	0	0	0
99	9_Woodland	1	1	0	0	0	0
100	10_Livestock Access	1	1	0	0	0	0
102	10_Cropland	1	1	0	0	0	0
103	10_Farmstead	1	1	0	0	0	0
104	10_Improved Pasture	1	1	0	0	0	0
105	10_Livestock Operati	1	1	0	0	0	0
106	10_Residential	1	1	0	0	0	0
	—						
107	10_Unimproved Pastur	1	1	0	0	0	0
108	10_Water	1	1	0	0	0	0
109	10_Woodland	1	1	0	0	0	0
110	11_Livestock Access	1	1	0	0	0	0
111	11_Commercial and Se	1	1	0	0	0	0
112	11_Cropland	1	1	0	0	0	0
113	11_Farmstead	1	1	0	0	0	0
114	11_Improved Pasture	1	1	0	0	0	0
115		1	1				
	11_Livestock Operati			0	0	0	0
116	11_Residential	1	1	0	0	0	0
117	11_Unimproved Pastur	1	1	0	0	0	0
118	11 Water	1	1	0	0	0	0
119	11 Woodland	1	1	Ő	0		0
	—					0	
120	12_Livestock Access	1	1	0	0	0	0
121	12_Commercial and Se	1	1	0	0	0	0
122	12_Cropland	1	1	0	0	0	0
123	12_Farmstead	1	1	0	0	0	0
124	12_Improved Pasture	1	1	0	0	0	0
125	12_Livestock Operati	1	1	0	0	0	0
126	12_Residential	1	1	0	0	0	0
127	12_Unimproved Pastur	1	1	0	0	0	0
128	12_Water	1	1	0	0	0	0
129	12_Woodland	1	1	0	0	0	0
130	13 Livestock Access	1	1	0	0	0	0
131	13_Commercial and Se	1	1	0	0	0	0
134	13_Improved Pasture	1	1	0	0	0	0
136	13_Residential	1	1	0	0	0	0
137	13_Unimproved Pastur	1	1	0	0	0	0
139	13 Woodland	1	1	0	0	0	0
	—						
140	14_Livestock Access	1	1	0	0	0	0
142	14_Cropland	1	1	0	0	0	0
143	14_Farmstead	1	1	0	0	0	0
144		1	1	0	0	0	0
	14_Livestock Operati	1	1	0			0
145					0	0	
146	14_Residential	1	1	0	0	0	0
147	14_Unimproved Pastur	1	1	0	0	0	0
148	14_Water	1	1	0	0	0	0
-	-	-		-	-	-	-

149	14_Woodland	1	1	0	0	0	0
150	15_Livestock Access	1	1	0	0	0	0
152	15_Cropland	1	1	0	0	0	0
153	15_Farmstead	1	1	0	0	0	0
	—						
154	15_Improved Pasture	1	1	0	0	0	0
155	15 Livestock Operati	1	1	0	0	0	0
156	15_Residential	1	1	0	0	0	0
	—						
157	15_Unimproved Pastur	1	1	0	0	0	0
159	15_Woodland	1	1	0	0	0	0
160	16_Livestock Access	1	1	0	0	0	0
161	16_Commercial and Se	1	1	0	0	0	0
162	16 Cropland	1	1	0	0	0	0
	_ ÷						
163	16_Farmstead	1	1	0	0	0	0
164	16_Improved Pasture	1	1	0	0	0	0
165	16_Livestock Operati	1	1	0	0	0	0
166	16_Residential	1	1	0	0	0	0
167	16_Unimproved Pastur	1	1	0	0	0	0
169	16_Woodland	1	1	0	0	0	0
	—						
170	17_Livestock Access	1	1	0	0	0	0
172	17_Cropland	1	1	0	0	0	0
		1					
173	17_Farmstead		1	0	0	0	0
174	17_Improved Pasture	1	1	0	0	0	0
176	17 Residential	1	1	0	0	0	0
	—						
177	17_Unimproved Pastur	1	1	0	0	0	0
178	17_Water	1	1	0	0	0	0
179		1	1	0	0	0	0
180	18_Livestock Access	1	1	0	0	0	0
181	18_Commercial and Se	1	1	0	0	0	0
182	18_Cropland	1	1	0	0	0	0
183	18_Farmstead	1	1	0	0	0	0
184	18_Improved Pasture	1	1	0	0	0	0
	18_Residential	1	1	0	0	0	0
186	—						
188	18_Water	1	1	0	0	0	0
189	18_Woodland	1	1	0	0	0	0
	—						
190	19_Livestock Access	1	1	0	0	0	0
191	19_Commercial and Se	1	1	0	0	0	0
192	19_Cropland	1	1	0	0	0	0
193	19_Farmstead	1	1	0	0	0	0
194	19_Improved Pasture	1	1	0	0	0	0
195	19_Livestock Operati	1	1	0	0	0	0
196	19_Residential	1	1	0	0	0	0
199	19_Woodland	1	1	0	0	0	0
200	20_Livestock Access	1	1	0	0	0	0
201	20_Commercial and Se	1	1	0	0	0	0
203	20_Farmstead	1	1	0	0	0	0
204	20_Improved Pasture	1	1	0	0	0	0
206	20_Residential	1	1	0	0	0	0
209	20_Woodland	1	1	0	0	0	0
210	21_Livestock Access	1	1	0	0	0	0
211	21_Commercial and Se	1	1	0	0	0	0
212	21 Cropland	1	1	0	0	0	0
213	21_Farmstead	1	1	0	0	0	0
214	21_Improved Pasture	1	1	0	0	0	0
216	21_Residential	1	1	0	0	0	0
218	21_Water	1	1	0	0	0	0
	—						
219	21_Woodland	1	1	0	0	0	0
220	22_Livestock Access	1	1	0	0	0	0
		1					
221	22_Commercial and Se		1	0	0	0	0
222	22_Cropland	1	1	0	0	0	0
223	22_Farmstead	1	1	0	0	0	0
	—						
224	22_Improved Pasture	1	1	0	0	0	0
226	22_Residential	1	1	0	0	0	0
227	22 Unimproved Pastur	1	1	0	0	0	0
	_ I						
228	22_Water	1	1	0	0	0	0
229	22_Woodland	1	1	0	0	0	0
230	23_Livestock Access	1	1	0	0	0	0
	—						
231	23_Commercial and Se	1	1	0	0	0	0
232	23_Cropland	1	1	0	0	0	0
233	23_Farmstead	1	1	0	0	0	0
234	23_Improved Pasture	1	1	0	0	0	0
236	23_Residential	1	1	0	0	0	0

237	23_Unimproved Pastur	1	1	0	0	0	0
	_						
238	23_Water	1	1	0	0	0	0
239	23_Woodland	1	1	0	0	0	0
240	24_Livestock Access	1	1	0	0	0	0
241	24_Commercial and Se	1	1	0	0	0	0
242	24_Cropland	1	1	0	0	0	0
243	24_Farmstead	1	1	0	0	0	0
	—						
244	24_Improved Pasture	1	1	0	0	0	0
246	24 Residential	1	1	0	0	0	0
	—						
248	24_Water	1	1	0	0	0	0
249	24_Woodland	1	1	0	0	0	0
250	25_Livestock Access	1	1	0	0	0	0
251	25_Commercial and Se	1	1	0	0	0	0
252	25_Cropland	1	1	0	0	0	0
253	25_Farmstead	1	1	0	0	0	0
254	25_Improved Pasture	1	1	0	0	0	0
256	25_Residential	1	1	0	0	0	0
	—						
258	25_Water	1	1	0	0	0	0
259	25_Woodland	1	1	0	0	0	0
260		1	1	0	0	0	0
261	26_Commercial and Se	1	1	0	0	0	0
262	26_Cropland	1	1	0	0	0	0
263	26_Farmstead	1	1	0	0	0	0
264	26_Improved Pasture	1	1	0	0	0	0
265	26 Livestock Operati	1	1	0	0	0	0
266	26_Residential	1	1	0	0	0	0
267	26_Unimproved Pastur	1	1	0	0	0	0
268	26_Water	1	1	0	0	0	0
269	26_Woodland	1	1	0	0	0	0
270	27 Livestock Access	1	1	0	0	0	0
272	27_Cropland	1	1	0	0	0	0
273	27_Farmstead	1	1	0	0	0	0
274	—	1	1	0	0		0
	27_Improved Pasture					0	
275	27_Livestock Operati	1	1	0	0	0	0
276	27_Residential	1	1	0	0	0	0
	—						
277	27_Unimproved Pastur	1	1	0	0	0	0
279	27_Woodland	1	1	0	0	0	0
280		1	1	0	0	0	0
282	28_Cropland	1	1	0	0	0	0
283	28_Farmstead	1	1	0	0	0	0
284	—	1	1	0	0		0
	28_Improved Pasture					0	
285	28_Livestock Operati	1	1	0	0	0	0
286	28_Residential	1	1	0	0	0	0
	—						
287	28_Unimproved Pastur	1	1	0	0	0	0
288	28 Water	1	1	0	0	0	0
289	28_Woodland	1	1	0	0	0	0
290	29_Livestock Access	1	1	0	0	0	0
291	29_Commercial and Se	1	1	0	0	0	0
292	29_Cropland	1	1	0	0	0	0
	29_CIOPIANO			-	-	-	-
293	29_Farmstead	1	1	0	0	0	0
294	29_Improved Pasture	1	1	0	0	0	0
295	29_Livestock Operati	1	1	0	0	Ő	0
296	29_Residential	1	1	0	0	0	0
297	29_Unimproved Pastur	1	1	0	0	0	0
298		1	1	0	0	0	0
	29_Water						
299	29_Woodland	1	1	0	0	0	0
300	30 Livestock Access	1	1	0	0	0	0
301	30_Commercial and Se	1	1	0	0	0	0
302	30_Cropland	1	1	0	0	0	0
303	30_Farmstead	1	1	0	0	0	0
	—						
304	30_Improved Pasture	1	1	0	0	0	0
306	30_Residential	1	1	0	0	0	0
		1	1	0			
307	30_Unimproved Pastur				0	0	0
308	30_Water	1	1	0	0	0	0
309	30_Woodland	1	1	0	0	0	0
310	31_Livestock Access	1	1	0	0	0	0
312	31_Cropland	1	1	0	0	0	0
313	31_Farmstead	1	1	0	0	0	0
314	31_Improved Pasture	1	1	0	0	0	0
316	31_Residential	1	1	0	0	0	0
319	31_Woodland	1	1	0	0	0	0
515	JT_MOOUTAILU	T	Ŧ	U	U	U	U

TMDL Development

320 321 322 323 324 325 326	32_Livestock Access 32_Commercial and Se 32_Cropland 32_Farmstead 32_Improved Pasture 32_Livestock Operati 32_Residential		1 1 1 1 1 1	1 1 1 1 1	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	
328 329 330 332	32_Water 32_Woodland 33_Livestock Access 33_Cropland		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
333 334 335 336	33_Farmstead 33_Improved Pasture 33_Livestock Operati 33_Residential		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	
337 338 339 340	33_Unimproved Pastur 33_Water 33_Woodland 34_Livestock Access		1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	
341 342 343 344 346	34_Commercial and Se 34_Cropland 34_Farmstead 34_Improved Pasture 34_Residential		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	
347 349 350 351	34_Unimproved Pastur 34_Woodland 35_Livestock Access 35 Commercial and Se		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
352 353 354 355	35_Cropland 35_Farmstead 35_Improved Pasture 35_Livestock Operati		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0	0 0 0	0 0 0 0	
356 357 359 360	35_Residential 35_Unimproved Pastur 35_Woodland 36_Livestock Access		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	
362 363 364 365 366	36_Cropland 36_Farmstead 36_Improved Pasture 36_Livestock Operati 36_Residential		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	
367 368 369 370	36_Unimproved Pastur 36_Water 36_Woodland 37_Livestock Access		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
371 372 373 374	37_Commercial and Se 37_Cropland 37_Farmstead 37_Improved Pasture		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
375 376 377 378	37_Livestock Operati 37_Residential 37_Unimproved Pastur 37_Water		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0	0 0 0	
379 380 382 383 384	37_Woodland 38_Livestock Access 38_Cropland 38_Farmstead 38_Improved Pasture		1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
386 389	38_Residential 38_Woodland EN-INFO		1	1 1	0 0	0 0	0 0	0	
10		.ags VUZ VNN 0 0	VIFW O	VIRC 0	VLE IF 1	FC 1	HWT I O	RRG 0	
PWAT-1 *** < P1 *** x	LS> FOREST LZSN	INFILT (in/hr)		LSUR (ft)	SLS	SUR		ARY in)	AGWRC (1/day)

F-6

10	1	6.5	0.084	110	0.001	0	0.98
11	1	6.5	0.084	369.5751	0.1241	0	0.98
	1					0	
12		6.5	0.084	897.072	0.041		0.98
13	1	6.5	0.084	218.7578	0.0424	0	0.98
14	1	6.5	0.084	434.6182	0.0472	0	0.98
15	1	6.5	0.084	835.9075	0.0307	0	0.98
16	1	6.5	0.084	262.6979	0.0398	0	0.98
17	1	6.5	0.084	437.1469	0.0985	0	0.98
18	1	6.5	0.084	110	0.0194	0	0.98
19	1	6.5	0.084	497.9778	0.0925	0	0.98
20	1	6.5	0.08	110	0.001	0	0.98
22	1	6.5	0.08	585.4506	0.0342	0	0.98
23	1	6.5	0.08	177.139	0.0469	0	0.98
24	1	6.5	0.08	356.1568	0.0494	0	0.98
26	1	6.5	0.08	222.5423	0.0642	0	0.98
27	1	6.5	0.08	414.5731	0.0797	0	0.98
28	1	6.5	0.08	110	0.016	0	0.98
29	1	6.5	0.08	442.5558	0.1063	0	0.98
30	1	6.5	0.08	110	0.0148	0	0.98
	1						
31		6.5	0.08	1387.113	0.0694	0	0.98
32	1	6.5	0.08	864.2307	0.0425	0	0.98
33	1	6.5	0.08	593.489	0.0397	0	0.98
34	1	6.5	0.08	527.8329	0.0444	0	0.98
35	1	6.5	0.08	454.2876	0.0295	0	0.98
36	1	6.5	0.08	305.8447	0.0403	0	0.98
	1						
37		6.5	0.08	504.6789	0.0424	0	0.98
38	1	6.5	0.08	110	0.0201	0	0.98
39	1	6.5	0.08	781.499	0.0614	0	0.98
40	1	6.5	0.08	110	0.001	0	0.98
42	1	6.5	0.08	617.9631	0.031	0	0.98
43	1	6.5	0.08	212.284	0.0447	0	0.98
44	1	6.5				0	
			0.08	401.4316	0.042		0.98
46	1	6.5	0.08	110	0.0499	0	0.98
47	1	6.5	0.08	2063	0.0426	0	0.98
48	1	6.5	0.08	154.1493	0.0387	0	0.98
49	1	6.5	0.08	1156.151	0.0492	0	0.98
50	1	6.5	0.08	110	0.001	0	0.98
52	1	6.5	0.08	497.4568	0.0458	0	0.98
53	1	6.5	0.08	439.9562	0.0534	0	0.98
54	1	6.5	0.08	476.8768	0.0575	0	0.98
55	1	6.5	0.08	1212.512	0.1043	0	0.98
56	1	6.5	0.08	656.9404	0.0618	0	0.98
57	1	6.5	0.08	257.6447	0.0658	0	0.98
58	1	6.5	0.08	110	0.0338	0	0.98
59	1	6.5	0.08	809.9756	0.0706	0	0.98
60	1	6.5	0.08	110	0.0109	0	0.98
61	1	6.5	0.08	297.3905	0.0771	0	0.98
62	1	6.5	0.08	834.2977	0.0408	0	0.98
63	1	6.5	0.08	344.1709	0.0364	0	0.98
64	1	6.5	0.08	445.535	0.0541	0	0.98
65	1	6.5	0.08	753.5056	0.0377	0	0.98
66	1	6.5	0.08	608.1203	0.0384	0	0.98
67	1	6.5	0.08	219.0378	0.0686	0	0.98
68	1	6.5	0.08	110	0.0197	0	0.98
			0.08				0.98
69	1	6.5		634.5605	0.0663	0	
70	1	6.5	0.08	100	0.001	0	0.98
71	1	6.5	0.08	1352	0.0606	0	0.98
72	1	6.5	0.08	310.5958	0.0623	0	0.98
73	1	6.5	0.08	1512.857	0.062	0	0.98
74	1	6.5	0.08	510.3814	0.0704	0	0.98
76	1	6.5	0.08	3055.383	0.0527	0	0.98
77	1	6.5	0.08	389.4072	0.124	0	0.98
79	1	6.5	0.08	608.454	0.0757	0	0.98
80	1	6.5	0.08	110	0.001	0	0.98
83	1	6.5	0.08	227.5696	0.0776	0	0.98
84	1	6.5	0.08	266.1922	0.0544	0	0.98
86	1	6.5	0.08	469.0948	0.0242	0	0.98
87	1	6.5	0.08	177.4514	0.0721	0	0.98
89	1	6.5	0.08	296.3304	0.1011	0	0.98
90	1	6.5	0.071	110	0.0129	0	0.98
91	1	6.5	0.071	399.8866	0.0366	0	0.98
~ -	-		0.0/1	322.0000	0.0000	0	0.20

92	1	6.5	0.071	1441.979	0.0199	0	0.98
93	1	6.5	0.071	187.4393	0.0339	0	0.98
94	1	6.5	0.071	495.4647	0.0356	0	0.98
95	1	6.5	0.071	353.9532	0.0278	0	0.98
96	1		0.071			0	
		6.5		507.1729	0.0181		0.98
97	1	6.5	0.071	446.6758	0.0349	0	0.98
98	1	6.5	0.071	110	0.0198	0	0.98
99	1	6.5	0.071	472.1543	0.1519	0	0.98
100	1	6.5	0.08	110	0.012	0	0.98
102	1	6.5	0.08	266.4325	0.0282	0	0.98
103	1	6.5	0.08	383.3581	0.0937	0	0.98
104	1	6.5	0.08	493.7322	0.0627	0	0.98
105	1	6.5	0.08	285.1888	0.0463	0	0.98
106	1	6.5	0.08	157.2929	0.0483	0	0.98
107	1	6.5	0.08	290.1458	0.0376	0	0.98
108	1	6.5	0.08	110	0.0302	0	0.98
109	1	6.5	0.08	337.4944	0.1054	0	0.98
	1						
110		6.5	0.09	110	0.001	0	0.98
111	1	6.5	0.08	321.5044	0.1579	0	0.98
112	1	6.5	0.08	626.7361	0.032	0	0.98
113	1	6.5	0.08	313.9881	0.0296	0	0.98
114	1	6.5	0.08	376.7512	0.0465	0	0.98
115	1	6.5	0.08	350.927	0.0217	0	0.98
116	1	6.5	0.08	152.8279	0.0352	0	0.98
117	1	6.5	0.08	364.9812	0.0299	0	0.98
118	1	6.5	0.08	110.6305	0.0243	0	0.98
119	1	6.5	0.08	420.1992	0.161	0	0.98
120	1	6.5	0.08	110	0.001	0	0.98
120	1	6.5	0.08	416.5505	0.0194	0	0.98
122	1	6.5	0.08	485.7196	0.0488	0	0.98
123	1	6.5	0.08	233.0143	0.0428	0	0.98
124	1	6.5	0.08	356.9847	0.0582	0	0.98
125	1	6.5	0.08	837.8792	0.0274	0	0.98
126	1	6.5	0.08	467.7743	0.0455	0	0.98
127	1	6.5	0.08	321.4879	0.0466	0	0.98
128	1	6.5	0.08	394.902	0.044	0	0.98
129	1	6.5	0.08	301.4467	0.0997	0	0.98
130	1	6.5	0.093	110	0.001	0	0.98
131	1	6.5	0.093	516.7993	0.021	0	0.98
134	1	6.5	0.093	110	0.0318	0	0.98
136	1	6.5	0.093	117.9817	0.0855	0	0.98
	1	6.5				0	
137			0.093	124.4521	0.0239		0.98
139	1	6.5	0.093	316.4813	0.1403	0	0.98
140	1	6.5	0.08	110	0.001	0	0.98
142	1	6.5	0.08	282.5151	0.0364	0	0.98
143	1	6.5	0.08	483.1855	0.044	0	0.98
144	1	6.5	0.08	417.4476	0.0551	0	0.98
145	1	6.5	0.08	591.6634	0.0326	0	0.98
146	1	6.5	0.08	368.6974	0.0839	0	0.98
147	1	6.5	0.08	412.5753	0.0813	0	0.98
148	1	6.5	0.08	392.8331	0.059	0	0.98
149	1	6.5	0.08	585.8314	0.0908	0	0.98
150	1	6.5	0.08	100	0.001	0	0.98
152	1	6.5	0.08	518.9684	0.0377	0	0.98
153	1	6.5	0.08	299.7514	0.0596	0	0.98
	1		0.08			0	
154		6.5		339.7242	0.0609		0.98
155	1	6.5	0.08	451.2147	0.0696	0	0.98
156	1	6.5	0.08	646.927	0.056	0	0.98
157	1	6.5	0.08	339.4743	0.0686	0	0.98
159	1	6.5	0.08	380.2835	0.0895	0	0.98
160	1	6.5	0.08	110	0.001	0	0.98
161	1	6.5	0.08	663.1727	0.0542	0	0.98
162	1	6.5	0.08	569.9617	0.0348	0	0.98
163	1	6.5	0.08	401.3167	0.0514	0	0.98
164	1	6.5	0.08	378.5446	0.0469	0	0.98
165	1	6.5	0.08	956.6623	0.0496	0	0.98
166	1	6.5	0.08	222.4808	0.0554	0	0.98
167	1		0.08	274.8572		0	0.98
		6.5			0.0409		
169	1	6.5	0.08	440.5875	0.0757	0	0.98
170	1	6.5	0.08	110	0.0112	0	0.98
172	1	6.5	0.08	515.9761	0.0726	0	0.98

173	1	6.5	0.08	469.1213	0.0402	0	0.98
174	1	6.5	0.08	342.7555	0.0646	0	0.98
176	1	6.5	0.08	950.1799	0.0299	0	0.98
177	1	6.5	0.08	323.1391	0.0733	0	0.98
178	1	6.5	0.08	110	0.0166	0	0.98
179	1	6.5	0.08	483.7527	0.0975	0	0.98
180	1	6.5	0.08	110	0.018	0	0.98
181	1	6.5	0.08	126.529	0.0371	0	0.98
182	1	6.5	0.08	617.9092	0.0411	0	0.98
183	1	6.5	0.08	107.8742	0.043	0	0.98
184	1	6.5	0.08	496.7762	0.0544	0	0.98
	1		0.08			0	
186		6.5		379.9626	0.0787		0.98
188	1	6.5	0.08	109	0.0302	0	0.98
189	1	6.5	0.08	784.2125	0.0698	0	0.98
190	1	6.5	0.08	110	0.001	0	0.98
191	1	6.5	0.08	452.4986	0.06	0	0.98
192	1	6.5	0.08	333.5394	0.0379	0	0.98
193	1	6.5	0.08	578.9221	0.0391	0	0.98
194	1	6.5	0.08	280.0916	0.0488	0	0.98
195	1	6.5	0.08	840.6927	0.0403	0	0.98
196	1	6.5	0.08	482.5249	0.0718	0	0.98
199	1	6.5	0.08	302.1682	0.0694	0	0.98
200	1	6.5	0.08	110	0.0166	0	0.98
201	1	6.5	0.08	617.4696	0.0846	0	0.98
203	1	6.5	0.08	215.3804	0.0339	0	0.98
	1		0.08			0	
204		6.5		420.2979	0.0544		0.98
206	1	6.5	0.08	463.9998	0.0548	0	0.98
209	1	6.5	0.08	924.5853	0.0748	0	0.98
210	1	6.5	0.08	110	0.001	0	0.98
	1						
211		6.5	0.08	750.3593	0.0291	0	0.98
212	1	6.5	0.08	3487.001	0.0289	0	0.98
213	1	6.5	0.08	1437.28	0.0331	0	0.98
214	1	6.5	0.08	644.6159	0.0335	0	0.98
216	1	6.5	0.08	811.4683	0.0391	0	0.98
218	1	6.5	0.08	110	0.024	0	0.98
219	1	6.5	0.08	1050.113	0.0542	0	0.98
220	1	6.5	0.052	110	0.001	0	0.98
221	1	6.5	0.052	618.608	0.0406	0	0.98
222	1	6.5	0.052	608.7639	0.0304	0	0.98
223	1	6.5	0.052	110	0.026	0	0.98
224	1	6.5	0.052	422.535	0.0485	0	0.98
226	1	6.5	0.052	1765.735	0.0441	0	0.98
227	1	6.5	0.052	2844.625	0.0226	0	0.98
228	1	6.5	0.052	110	0.0527	0	0.98
229	1	6.5	0.052	1211.86	0.0548	0	0.98
230	1	6.5	0.055	110	0.001	0	0.98
231	1	6.5	0.055	700.3515	0.0273	0	0.98
232	1	6.5	0.055	259.8107	0.0219	0	0.98
233	1	6.5	0.055	219.0117	0.0663	0	0.98
234	1	6.5	0.055	282.5348	0.0517	0	0.98
236	1	6.5	0.055	534.2773	0.0523	0	0.98
	1			249.1398		0	
237		6.5	0.055		0.0683		0.98
238	1	6.5	0.055	110	0.0303	0	0.98
239	1	6.5	0.055	444.1843	0.0666	0	0.98
240	1	6.5	0.08	110	0.013	0	0.98
241	1	6.5	0.08	573.3135	0.0516	0	0.98
242	1	6.5	0.08	433.4326	0.0281	0	0.98
243	1	6.5	0.08	870.8921	0.0317	0	0.98
244	1	6.5	0.08	454.2236	0.0408	0	0.98
	1		0.08			0	
246		6.5		687.333	0.0638		0.98
248	1	6.5	0.08	110	0.0253	0	0.98
249	1	6.5	0.08	528.8689	0.073	0	0.98
250	1	6.5	0.1	110	0.001	0	0.98
251	1	6.5	0.1	450.8453	0.0288	0	0.98
252	1	6.5	0.1	529.4776	0.0286	0	0.98
253	1	6.5	0.1	503.7502	0.0718	0	0.98
254	1	6.5	0.1	263.2449	0.0356	0	0.98
256	1	6.5	0.1	446.7256	0.0348	0	0.98
258	1	6.5	0.1	110	0.0147	0	0.98
259	1	6.5	0.1	253.5465	0.0698	0	0.98
260	1	6.5	0.1	110	0.0103	0	0.98

261	1	6.5	0.08	935.0799	0.0382	0	0.98
262	1	6.5	0.08	440.502	0.0268	0	0.98
263	1	6.5	0.08	372.1447	0.0527	Ő	0.98
264	1	6.5	0.08	461.6713	0.0524	0	0.98
265	1	6.5	0.08	198.452	0.1237	0	0.98
266	1	6.5	0.08	485.2174	0.0577	0	0.98
267	1	6.5	0.08	214.212	0.0698	0	0.98
268	1	6.5	0.08	110	0.0213	0	0.98
269	1	6.5	0.08	469.4624	0.0712	0	0.98
270	1	6.5	0.08	110	0.0168	0	0.98
272	1	6.5	0.08	431.7463	0.043	0	0.98
273	1	6.5	0.08	252.347	0.0451	0	0.98
274	1	6.5	0.08	373.011	0.0498	0	0.98
275	1	6.5	0.08	293.3055	0.0488	0	0.98
276	1	6.5	0.08	549.2024	0.0841	Ő	0.98
270	1	6.5	0.08			0	
				549.746	0.0609		0.98
279	1	6.5	0.08	381.3773	0.0741	0	0.98
280	1	6.5	0.08	110	0.011	0	0.98
282	1	6.5	0.08	981.9388	0.0363	0	0.98
283	1	6.5	0.08	826.2197	0.0488	0	0.98
284	1	6.5	0.08	496.496	0.0632	0	0.98
285	1	6.5	0.08	828.9576	0.0866	0	0.98
286	1	6.5	0.08	621.1424	0.0757	0	0.98
287	1	6.5	0.08	746.8707	0.0539	0	0.98
288	1	6.5	0.08	110	0.001	0	0.98
289	1	6.5					
			0.08	496.0735	0.0828	0	0.98
290	1	6.5	0.08	110	0.0154	0	0.98
291	1	6.5	0.08	924.3329	0.0231	0	0.98
292	1	6.5	0.08	705.2804	0.0353	0	0.98
293	1	6.5	0.08	870.983	0.0334	0	0.98
294	1	6.5	0.08	469.8864	0.0467	0	0.98
295	1	6.5	0.08	528.5553	0.0422	0	0.98
296	1	6.5	0.08	441.5463	0.0534	0	0.98
297	1	6.5	0.08	326.1224	0.0574	0	0.98
298	1	6.5	0.08	544.7945	0.0104	0	0.98
299	1	6.5	0.08	520.9015	0.0837	Ő	0.98
300	1	6.5	0.06	110	0.0107	0	0.98
301	1	6.5	0.06	648.7498	0.0274	0	0.98
302	1	6.5	0.06	462.6484	0.0277	0	0.98
303	1	6.5	0.06	517.6871	0.0495	0	0.98
304	1	6.5	0.06	339.9978	0.0386	0	0.98
306	1	6.5	0.06	524.8222	0.0443	0	0.98
307	1	6.5	0.06	827.8719	0.0384	0	0.98
308	1	6.5	0.06	110	0.001	0	0.98
309	1	6.5	0.06	428.2845	0.0504	0	0.98
310	1	6.5	0.09	110	0.001	0	0.98
312	1	6.5	0.09	341.1128	0.0336	0	0.98
313	1	6.5	0.09	807.4236	0.0442	0	0.98
	1	6.5		356.3012		0	0.98
314			0.09		0.0644		
316	1	6.5	0.09	292.1407	0.2849	0	0.98
319	1	6.5	0.09	229.8109	0.0871	0	0.98
320	1	6.5	0.08	110	0.001	0	0.98
321	1	6.5	0.08	977.7128	0.0477	0	0.98
322	1	6.5	0.08	283.9849	0.0299	0	0.98
323	1	6.5	0.08	323.576	0.0376	0	0.98
324	1	6.5	0.08	416.151	0.0528	0	0.98
325	1	6.5	0.08	1100.884	0.0624	0	0.98
326	1	6.5	0.08	304.9806	0.0489	0	0.98
328	1	6.5		110		Ő	0.98
			0.08		0.001		
329	1	6.5	0.08	274.9931	0.064	0	0.98
330	1	6.5	0.08	110	0.001	0	0.98
332	1	6.5	0.08	619.9933	0.0266	0	0.98
333	1	6.5	0.08	478.072	0.0445	0	0.98
334	1	6.5	0.08	472.6589	0.0331	0	0.98
335	1	6.5	0.08	1025.951	0.0137	0	0.98
336	1	6.5	0.08	1858.137	0.0651	0	0.98
337	1	6.5	0.08	1643.655	0.0413	Ő	0.98
338	1	6.5	0.08	1043.055	0.0407	0	0.98
339	1	6.5	0.08	1007.247	0.0501	0	0.98
340	1	6.5	0.09	110	0.0118	0	0.98
341	1	6.5	0.09	1098.586	0.0293	0	0.98

342							
	1	6.5	0.09	451.0145	0.0248	0	0.98
343	1	6.5	0.09	579.3492	0.0369	0	0.98
344	1	6.5	0.09	335.1768	0.0379	0	0.98
346	1	6.5	0.09	389.4346	0.0291	0	0.98
347	1	6.5	0.09	539.3727	0.054	0	0.98
	1		0.09			0	
349		6.5		292.1462	0.0559		0.98
350	1	6.5	0.075	110	0.0134	0	0.98
351	1	6.5	0.075	545.9714	0.0344	0	0.98
352	1	6.5	0.075	478.7029	0.0313	0	0.98
353	1	6.5	0.075	637.771	0.0392	0	0.98
354	1	6.5	0.075	382.4674	0.0435	0	0.98
	1					0	
355		6.5	0.075	457.7592	0.0795		0.98
356	1	6.5	0.075	748.937	0.0281	0	0.98
357	1	6.5	0.075	556.784	0.0444	0	0.98
359	1	6.5	0.075	527.6207	0.0518	0	0.98
360	1	6.5	0.072	110	0.001	0	0.98
362	1	6.5	0.072	669.7364	0.0234	0	0.98
363	1	6.5	0.072	575.2484	0.0524	0	0.98
364	1	6.5	0.072	398.8198	0.0267	0	0.98
365	1	6.5	0.072	780.9731	0.0393	0	0.98
366	1	6.5	0.072	145.2704	0.0578	0	0.98
367	1	6.5	0.072	937.1381	0.0625	0	0.98
368	1	6.5	0.072	110	0.001	0	0.98
369	1	6.5	0.072	653.2656	0.0299	0	0.98
	1						
370		6.5	0.092	110	0.0133	0	0.98
371	1	6.5	0.072	330.8448	0.0344	0	0.98
372	1	6.5	0.072	452.8517	0.0361	0	0.98
373	1	6.5	0.072	450.948	0.0398	0	0.98
374	1	6.5	0.072	370.488	0.0388	0	0.98
375	1	6.5	0.072	276.5947	0.0385	0	0.98
	1						
376		6.5	0.072	755.1885	0.0262	0	0.98
377	1	6.5	0.072	196.8456	0.0336	0	0.98
378	1	6.5	0.072	110	0.0147	0	0.98
379	1	6.5	0.072	283.3097	0.0572	0	0.98
380	1	6.5	0.08	110	0.001	0	0.98
382	1	6.5	0.08	831.2561	0.0494	0	0.98
383	1						
						∩	
		6.5	0.08	808.3819	0.0748	0	0.98
384	1	6.5	0.08 0.08	808.3819 365.9771	0.0748 0.0554	0 0	0.98 0.98
384	1	б.5	0.08	365.9771	0.0554	0	0.98
384 386 389	1 1 1	6.5 6.5	0.08 0.08	365.9771 692.5897	0.0554 0.0981	0 0	0.98 0.98
384 386	1 1 1	6.5 6.5	0.08 0.08	365.9771 692.5897	0.0554 0.0981	0 0	0.98 0.98
384 386 389 END PWAT	1 1 1 -PARM2	6.5 6.5	0.08 0.08	365.9771 692.5897	0.0554 0.0981	0 0	0.98 0.98
384 386 389 END PWAT PWAT-PAR	1 1 -PARM2 M3	6.5 6.5 6.5	0.08 0.08 0.08	365.9771 692.5897 760.5997	0.0554 0.0981 0.055	0 0 0	0.98 0.98 0.98
384 386 389 END PWAT PWAT-PAR *** < PLS>	1 1 -PARM2 M3 PETMAX	6.5 6.5 6.5 PETMIN	0.08 0.08	365.9771 692.5897	0.0554 0.0981	0 0	0.98 0.98
384 386 389 END PWAT PWAT-PAR	1 1 -PARM2 M3 PETMAX	6.5 6.5 6.5	0.08 0.08 0.08	365.9771 692.5897 760.5997	0.0554 0.0981 0.055	0 0 0	0.98 0.98 0.98
384 386 389 END PWAT PWAT-PAR *** < PLS>	1 1 -PARM2 M3 PETMAX	6.5 6.5 6.5 PETMIN	0.08 0.08 0.08	365.9771 692.5897 760.5997	0.0554 0.0981 0.055	0 0 0	0.98 0.98 0.98
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x	1 1 -PARM2 M3 (deg F) 40.	6.5 6.5 6.5 PETMIN (deg F)	0.08 0.08 0.08 INFEXP	365.9771 692.5897 760.5997 INFILD	0.0554 0.0981 0.055 DEEPFR	0 0 BASETP	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389	1 1 -PARM2 M3 (deg F) 40.	6.5 6.5 6.5 PETMIN (deg F)	0.08 0.08 0.08 INFEXP	365.9771 692.5897 760.5997 INFILD	0.0554 0.0981 0.055 DEEPFR	0 0 BASETP	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT	1 1 1 -PARM2 M3 (deg F) 40. -PARM3	6.5 6.5 6.5 PETMIN (deg F)	0.08 0.08 0.08 INFEXP	365.9771 692.5897 760.5997 INFILD	0.0554 0.0981 0.055 DEEPFR	0 0 BASETP	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR	1 1 1 -PARM2 M3 (deg F) 40. -PARM3 M4	6.5 6.5 9ETMIN (deg F) 35.	0.08 0.08 0.08 INFEXP 2.	365.9771 692.5897 760.5997 INFILD 2.	0.0554 0.0981 0.055 DEEPFR 0.1	0 0 BASETP 0.032	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls></pls>	1 1 1 PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC	6.5 6.5 (deg F) 35. UZSN	0.08 0.08 0.08 INFEXP	365.9771 692.5897 760.5997 INFILD	0.0554 0.0981 0.055 DEEPFR 0.1 IRC	0 0 BASETP 0.032 LZETP	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x</pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in)	6.5 6.5 6.5 (deg F) 35. UZSN (in)	0.08 0.08 0.08 INFEXP 2. NSUR	365.9771 692.5897 760.5997 INFILD 2. INTFW	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day)	0 0 BASETP 0.032 LZETP	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls></pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in)	6.5 6.5 6.5 (deg F) 35. UZSN (in)	0.08 0.08 0.08 INFEXP 2. NSUR	365.9771 692.5897 760.5997 INFILD 2.	0.0554 0.0981 0.055 DEEPFR 0.1 IRC	0 0 BASETP 0.032 LZETP	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x</pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1	6.5 6.5 6.5 (deg F) 35. UZSN (in)	0.08 0.08 0.08 INFEXP 2. NSUR	365.9771 692.5897 760.5997 INFILD 2. INTFW	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day)	0 0 BASETP 0.032 LZETP	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389</pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1	6.5 6.5 6.5 (deg F) 35. UZSN (in)	0.08 0.08 0.08 INFEXP 2. NSUR	365.9771 692.5897 760.5997 INFILD 2. INTFW	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day)	0 0 BASETP 0.032 LZETP	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT</pls>	1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.5 6.5 6.5 (deg F) 35. UZSN (in)	0.08 0.08 0.08 INFEXP 2. NSUR	365.9771 692.5897 760.5997 INFILD 2. INTFW	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day)	0 0 BASETP 0.032 LZETP	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> 10 389 END PWAT PWAT-STA</pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128	0.08 0.08 0.08 INFEXP 2. NSUR 0.2	365.9771 692.5897 760.5997 INFILD 2. INTFW	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day)	0 0 BASETP 0.032 LZETP	0.98 0.98 0.98 AGWETP
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT FWAT-STA</pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128	0.08 0.08 0.08 INFEXP 2. NSUR 0.2	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5	0 0 BASETP 0.032 LZETP 0.1	0.98 0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT FWAT-STA *** < PLS></pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 cate variał SURS	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 Dles (in) UZS	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5	0 0 BASETP 0.032 LZETP 0.1 AGWS	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT FWAT-STA</pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128	0.08 0.08 0.08 INFEXP 2. NSUR 0.2	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5	0 0 BASETP 0.032 LZETP 0.1 AGWS	0.98 0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT FWAT-STA *** < PLS></pls>	1 1 1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 cate variał SURS	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 Dles (in) UZS	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5	0 0 BASETP 0.032 LZETP 0.1 AGWS	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389</pls>	1 1 1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 cate variał SURS	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 Dles (in) UZS	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5	0 0 BASETP 0.032 LZETP 0.1 AGWS	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT</pls>	1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 cate variał SURS	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 Dles (in) UZS	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5	0 0 BASETP 0.032 LZETP 0.1 AGWS	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT MON-UZSN</pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01 -STATE1	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 cate varial SURS 0.01	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5	0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT *** < PLS> *** x - x 10 389 END PWAT</pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01 -STATE1 Upper zor	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 tate varial SURS 0.01	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3 at start c	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5	0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT *** < PLS> *** x - x 10 389 END PWAT</pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01 -STATE1 Upper zor JAN FEB	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 tate variah SURS 0.01 me storage MAR APR	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3 at start of MAY JUN	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01 of each mon JUL AUG	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5	0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01 es) NOV DEC	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 389</pls></pls>	1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 cate varial SURS 0.01 he storage MAR APR 1.12 1.12	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3 at start of MAY JUN 1.12 1.	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01 of each mon JUL AUG 1. 1.1	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5 tht (incher SEP OCT 1.1 1.12	0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01 **********************************	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 389</pls></pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01 -STATE1 Upper zor JAN FEB	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 cate varial SURS 0.01 he storage MAR APR 1.12 1.12	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3 at start of MAY JUN 1.12 1.	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01 of each mon JUL AUG	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5 tht (incher SEP OCT 1.1 1.12	0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01 es) NOV DEC	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 389</pls></pls>	1 1 1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01 -STATE1 Upper zor JAN FEB 1.12 1.12 1.13 1.12 1.12 1.12	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 tate varial SURS 0.01 me storage MAR APR 1.12 1.12 1.12 1.12	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3 at start of MAY JUN 1.12 1. 1.12 1.	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01 of each mon JUL AUG 1. 1.1	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5 LZS 1.5	0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01 **********************************	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 389 END PWAT</pls></pls>	1 1 1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01 -STATE1 Upper zor JAN FEB 1.12 1.12 1.13 1.12 1.12 1.12	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 tate varial SURS 0.01 me storage MAR APR 1.12 1.12 1.12 1.12	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3 at start of MAY JUN 1.12 1. 1.12 1.	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01 of each mon JUL AUG 1. 1.1 1. 1.1	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5 LZS 1.5	0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01 PS) NOV DEC 1.12 1.12 1.12 1.12	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT *** x - x 10 389 END PWAT *** x - x 10 389 END PWAT</pls>	1 1 1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01 -STATE1 Upper zor JAN FEB 1.12 1.12 1.12 1.12 1.12 1.12	6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 UZSN (in) 1.128 cate varial SURS 0.01 me storage MAR APR 1.12 1.12 1.12 1.12 1.13 1.12	0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3 at start of MAY JUN 1.12 1. 1.12 1. 1.12 1.	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01 of each mon JUL AUG 1. 1.1 1. 1.1 1. 1.1 1. 1.1	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5 th (inche SEP OCT 1.1 1.2 1.1 1.12 1.1 1.12 1.1 1.12	0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01 PS) NOV DEC 1.12 1.12 1.12 1.12 1.12 1.12	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS > *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 12 13 14 15 16</pls></pls>	1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.5 6.5 6.5 9ETMIN (deg F) 35. UZSN (in) 1.128 cate varial SURS 0.01 he storage MAR APR 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.13	0.08 0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3 at start of MAY JUN 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.12 1.	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01 of each mon JUL AUG 1. 1.1 1. 1.1 1. 1.1 1. 1.1	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5 th (inche SEP OCT 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12	0 0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01 NOV DEC 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 12 13 14 15 16 17</pls></pls></pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01 -STATE1 Upper zor JAN FEB 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	6.5 6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 tate varial SURS 0.01 he storage MAR APR 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	0.08 0.08 0.08 0.08 INFEXP 2. NSUR 0.2 Oles (in) UZS 0.3 at start of MAY JUN 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.14 1.	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01 of each mon JUL AUG 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5 LZS 1.5 th (inche SEP OCT 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12	0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01 PS) NOV DEC 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 11 2 13 14 15 16 17 18</pls></pls></pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01 -STATE1 Upper zor JAN FEB 1.12 1.12 1.12 1.12	6.5 6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 cate varial SURS 0.01 he storage MAR APR 1.12 1.12 1.12 1.12 1.13 1.12 1.12 1.12 1.12 1.12 1.12 1.12	0.08 0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3 at start of MAY JUN 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.14 1. 1.12 1.	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01 of each mon JUL AUG 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5 th (inche SEP OCT 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12	0 0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01 AGWS 0.01 NOV DEC 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	0.98 0.98 AGWETP 0.
384 386 389 END PWAT PWAT-PAR *** < PLS> *** x - x 10 389 END PWAT PWAT-PAR *** <pls> *** x - x 10 389 END PWAT PWAT-STA *** < PLS> *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 389 END PWAT MON-UZSN *** <pls> *** x - x 10 12 13 14 15 16 17</pls></pls></pls>	1 -PARM2 M3 PETMAX (deg F) 40. -PARM3 M4 CEPSC (in) 0.1 -PARM4 TE1 PWATER st CEPS 0.01 -STATE1 Upper zor JAN FEB 1.12 1.12 1.12 1.12	6.5 6.5 6.5 6.5 PETMIN (deg F) 35. UZSN (in) 1.128 tate varial SURS 0.01 he storage MAR APR 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	0.08 0.08 0.08 0.08 INFEXP 2. NSUR 0.2 oles (in) UZS 0.3 at start of MAY JUN 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.12 1. 1.14 1. 1.12 1.	365.9771 692.5897 760.5997 INFILD 2. INTFW 0.75 IFWS 0.01 of each mon JUL AUG 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1 1. 1.1	0.0554 0.0981 0.055 DEEPFR 0.1 IRC (1/day) 0.5 LZS 1.5 th (inche SEP OCT 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12 1.1 1.12	0 0 0 BASETP 0.032 LZETP 0.1 AGWS 0.01 PS) NOV DEC 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12	0.98 0.98 AGWETP 0.

20

 1.12
 1.12
 1.12
 1.12
 1.13
 1.1
 1.11
 1.12
 1.12
 1.12

 7
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 23 27 1.12 1.12 1.12 1.12 1.12 24 1.12 1.12 1.12 1.12 1.12 28 29 1.12 1.12 1.12 1.12 1.12 1. 1.16 1.1 1.1 1.12 1.12 1.12 1. 1.17 1.1 1.1 1.12 1.12 1.12 1. 1.18 1.1 1.1 1.12 1.12 1.12 30 1.12 1.12 1.12 1.12 1.12 31 1.12 1.12 1.12 1.12 1.12 32

 1.18
 1.12
 1.12
 1.12
 1.
 1.1
 1.12
 1.12
 1.12

 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12
 1.12

 33 389 1.12 1.12 1.12 1.12 1.12 34 END MON-UZSN MON-LZETPARM *** <PLS > Lower zone evapotransp parm at start of each month *** x - x JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 10 389 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.2 0.2 END MON-LZETPARM NQUALS *** <PLS > *** x - xNQUAL 10 389 1 END NOUALS OUAL-PROPS *** <PLS > Identifiers and Flags *** x - x QUALID QTID QSD VPFW VPFS QSO VQO QIFW VIQC QAGW VAQC # 10 389FECAL COLIFO 0 0 0 1 1 1 1 0 0 END QUAL-PROPS OUAL-INPUT *** Storage on surface and nonseasonal parameters * * * SQO POTFW POTFS ACQOP SQOLIM WSQOP IOQC AOQC *** <PLS > qty/ac qty/ton qty/ton qty/ qty/ac in/hr qty/ft3 qty/ft3 *** x - x ac.day 10 0.00E+000.00E+000.00E+001.00E+031.00E+00 0.50001.00E+030.00E+00 7.04E+080.00E+000.00E+001.00E+031.00E+00 0.20001.00E+030.00E+00 11 12 1.16E+040.00E+000.00E+001.00E+031.00E+00 0.80001.00E+030.00E+00 13 1,92E+070,00E+000,00E+001,00E+031,00E+00 0,30001,00E+030,00E+00 14 7.05E+070.00E+000.00E+001.00E+031.00E+00 0.65001.00E+030.00E+00 7.89E+080.00E+000.00E+001.00E+031.00E+00 0.30001.00E+030.00E+00 15 16 2.21E+110.00E+000.00E+001.00E+031.00E+00 0.25001.00E+030.00E+00 17 1.51E+080.00E+000.00E+001.00E+031.00E+00 0.55001.00E+030.00E+00 18 4.41E+080.00E+000.00E+001.00E+031.00E+00 0.01001.00E+030.00E+00 19 0.00E+000.00E+000.00E+001.00E+031.00E+00 0.70001.00E+030.00E+00 20 2.56E+080.00E+000.00E+001.00E+031.00E+00 0.50001.00E+030.00E+00 8.53E+080.00E+000.00E+001.00E+031.00E+00 0.80001.00E+030.00E+00 2.2 8.63E+020.00E+000.00E+001.00E+031.00E+00 0.30001.00E+030.00E+00 23 24 6.47E+070.00E+000.00E+001.00E+031.00E+00 0.65001.00E+030.00E+00 1.07E+080.00E+000.00E+001.00E+031.00E+00 0.25001.00E+030.00E+00 26 27 3.15E+080.00E+000.00E+001.00E+031.00E+00 0.55001.00E+030.00E+00 28 7.85E+070.00E+000.00E+001.00E+031.00E+00 0.01001.00E+030.00E+00 29 2.69E+080.00E+000.00E+001.00E+031.00E+00 0.70001.00E+030.00E+002.69E+080.00E+000.00E+001.00E+031.00E+00 30 0.50001.00E+030.00E+00 0.00E+000.00E+000.00E+001.00E+031.00E+00 0.20001.00E+030.00E+00 31 32 2.14E+080.00E+000.00E+001.00E+031.00E+00 0.80001.00E+030.00E+00 33 7.40E+080.00E+000.00E+001.00E+031.00E+00 0.30001.00E+030.00E+00 34 6.93E+030.00E+000.00E+001.00E+031.00E+00 0.65001.00E+030.00E+00 35 8.62E+070.00E+000.00E+001.00E+031.00E+00 0.30001.00E+030.00E+00 36 6.22E+070.00E+000.00E+001.00E+031.00E+00 0.25001.00E+030.00E+00 2.93E+080.00E+000.00E+001.00E+031.00E+00 0.55001.00E+030.00E+00 37 9.24E+070.00E+000.00E+001.00E+031.00E+00 0.01001.00E+030.00E+00 38 2.33E+080.00E+000.00E+001.00E+031.00E+00 0.70001.00E+030.00E+00 39 40 1.85E+080.00E+000.00E+001.00E+031.00E+00 0.50001.00E+030.00E+00 42 0.00E+000.00E+000.00E+001.00E+031.00E+00 0.80001.00E+030.00E+00 43 2.66E+080.00E+000.00E+001.00E+031.00E+00 0.30001.00E+030.00E+00 44 9.32E+080.00E+000.00E+001.00E+031.00E+00 0.65001.00E+030.00E+00 46 3.88E+020.00E+000.00E+001.00E+031.00E+00 0.25001.00E+030.00E+00 47 6.16E+070.00E+000.00E+001.00E+031.00E+00 0.55001.00E+030.00E+00 48 1.21E+080.00E+000.00E+001.00E+031.00E+00 0.01001.00E+030.00E+00 2.91E+080.00E+000.00E+001.00E+031.00E+00 0.70001.00E+030.00E+00 49

50	1.19E+080.00E+000	.00E+001.00E+031.00E+00	1.00001.00E+030.00E+00
52		.00E+001.00E+031.00E+00	1.60001.00E+030.00E+00
53	2.61E+080.00E+000	.00E+001.00E+031.00E+00	0.60001.00E+030.00E+00
54	0.00E+000.00E+000	.00E+001.00E+031.00E+00	1.30001.00E+030.00E+00
55	2.77E+080.00E+000	.00E+001.00E+031.00E+00	0.60001.00E+030.00E+00
56		.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
57	6.62E+060.00E+000	.00E+001.00E+031.00E+00	1.10001.00E+030.00E+00
58	1.17E+080.00E+000	.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
59		.00E+001.00E+031.00E+00	1.40001.00E+030.00E+00
60		.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
61	3.52E+080.00E+000	.00E+001.00E+031.00E+00	0.10001.00E+030.00E+00
62	1.42E+080.00E+000	.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
63		.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
64		.00E+001.00E+031.00E+00	0.37501.00E+030.00E+00
65	3.10E+080.00E+000	.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
66	1.41E+080.00E+000	.00E+001.00E+031.00E+00	0.12501.00E+030.00E+00
67		.00E+001.00E+031.00E+00	0.27501.00E+030.00E+00
68	6.91E+060.00E+000	.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
69	8.83E+070.00E+000	.00E+001.00E+031.00E+00	0.35001.00E+030.00E+00
70		.00E+001.00E+031.00E+00	1.00001.00E+030.00E+00
71		.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
72	3.45E+080.00E+000	.00E+001.00E+031.00E+00	1.60001.00E+030.00E+00
73	0.00E+000.00E+000	.00E+001.00E+031.00E+00	0.60001.00E+030.00E+00
74		.00E+001.00E+031.00E+00	1.30001.00E+030.00E+00
76	1.46E+080.00E+000	.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
77	4.75E+080.00E+000	.00E+001.00E+031.00E+00	1.10001.00E+030.00E+00
79	5.27E+080.00E+000	.00E+001.00E+031.00E+00	1.40001.00E+030.00E+00
80		.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
83	4.36E+080.00E+000	.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
84	4.62E+080.00E+000	.00E+001.00E+031.00E+00	0.32501.00E+030.00E+00
86	2.64E+080.00E+000	.00E+001.00E+031.00E+00	0.12501.00E+030.00E+00
87		.00E+001.00E+031.00E+00	0.27501.00E+030.00E+00
89	4.08E+080.00E+000	.00E+001.00E+031.00E+00	0.35001.00E+030.00E+00
90	7.99E+080.00E+000	.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
91		.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
92		.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
93	5.01E+080.00E+000	.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
94	6.70E+080.00E+000	.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
95		.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
96		.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
97	0.00E+000.00E+000	.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
98	4.98E+080.00E+000	.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
99		.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
100		.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
102	4.59E+080.00E+000	.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
103	5.01E+080.00E+000	.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
104		.00E+001.00E+031.00E+00	0.32501.00E+030.00E+00
105		.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
106	5.29E+080.00E+000	.00E+001.00E+031.00E+00	0.12501.00E+030.00E+00
107	5.43E+080.00E+000	.00E+001.00E+031.00E+00	0.27501.00E+030.00E+00
108		.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
		.00E+001.00E+031.00E+00	
109			0.35001.00E+030.00E+00
110		.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
111	5.24E+080.00E+000	.00E+001.00E+031.00E+00	0.10001.00E+030.00E+00
112		.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
113		.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
114	0.00E+000.00E+000	.00E+001.00E+031.00E+00	0.32501.00E+030.00E+00
115	7.64E+080.00E+000	.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
116		.00E+001.00E+031.00E+00	0.12501.00E+030.00E+00
117		.00E+001.00E+031.00E+00	0.27501.00E+030.00E+00
118	4.99E+080.00E+000	.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
119	7.46E+080.00E+000	.00E+001.00E+031.00E+00	0.35001.00E+030.00E+00
120		.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
121		.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
122	0.00E+000.00E+000	.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
123	6.78E+080.00E+000	.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
124		.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
125		.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
126	5.07E+080.00E+000	.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
127	8.36E+080.00E+000	.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
128		.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
120	1.,22.000.000.000		5.51051.00E.050.00E.00

129	4.86E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
130	6.36E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
131	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
134	6.57E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
136	1.19E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
137	5.44E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
139	5.36E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
140	8.68E+080.00E+000.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
142	4.63E+080.00E+000.00E+001.00E+031.00E+00	0.64001.00E+030.00E+00
143	5.85E+080.00E+000.00E+001.00E+031.00E+00	0.24001.00E+030.00E+00
144	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.52001.00E+030.00E+00
145	5.87E+080.00E+000.00E+001.00E+031.00E+00	0.24001.00E+030.00E+00
146	2.22E+080.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
147	5.72E+080.00E+000.00E+001.00E+031.00E+00	0.44001.00E+030.00E+00
148	5.25E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
149	8.63E+080.00E+000.00E+001.00E+031.00E+00	0.56001.00E+030.00E+00
150	5.32E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
152	7.85E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
153	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
154	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
155	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
156	5.23E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
157	7.01E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
159	3.86E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
160	4.13E+080.00E+000.00E+001.00E+031.00E+00	1.00001.00E+030.00E+00
161	6.79E+080.00E+000.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
162	0.00E+000.00E+000.00E+001.00E+031.00E+00	1.60001.00E+030.00E+00
163	4.75E+080.00E+000.00E+001.00E+031.00E+00	0.60001.00E+030.00E+00
164	1.03E+090.00E+000.00E+001.00E+031.00E+00	1.30001.00E+030.00E+00
165	2.40E+080.00E+000.00E+001.00E+031.00E+00	0.60001.00E+030.00E+00
166	4.70E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
167	4.97E+080.00E+000.00E+001.00E+031.00E+00	1.10001.00E+030.00E+00
169	4.21E+080.00E+000.00E+001.00E+031.00E+00	1.40001.00E+030.00E+00
170	5.66E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
172	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
173	5.00E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
174	1.05E+090.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
176	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
177	4.36E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
178	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
179	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
180	6.47E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
181	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.10001.00E+030.00E+00
182	6.78E+080.00E+000.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
183	2.47E+080.00E+000.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
184	5.10E+080.00E+000.00E+001.00E+031.00E+00	0.37501.00E+030.00E+00
186	5.07E+080.00E+000.00E+001.00E+031.00E+00	0.12501.00E+030.00E+00
188	8.36E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
189	4.72E+080.00E+000.00E+001.00E+031.00E+00	0.35001.00E+030.00E+00
190	4.86E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
191	6.36E+080.00E+000.00E+001.00E+031.00E+00	0.10001.00E+030.00E+00
192	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
193	6.57E+080.00E+000.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
194	1.19E+080.00E+000.00E+001.00E+031.00E+00	0.37501.00E+030.00E+00
195	5.44E+080.00E+000.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
196	5.36E+080.00E+000.00E+001.00E+031.00E+00	0.12501.00E+030.00E+00
199	8.68E+080.00E+000.00E+001.00E+031.00E+00	0.35001.00E+030.00E+00
	4.63E+080.00E+000.00E+001.00E+031.00E+00 4.63E+080.00E+000.00E+001.00E+031.00E+00	
200		0.25001.00E+030.00E+00
201	5.85E+080.00E+000.00E+001.00E+031.00E+00	0.10001.00E+030.00E+00
203	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
204	5.87E+080.00E+000.00E+001.00E+031.00E+00	0.37501.00E+030.00E+00
206	2.22E+080.00E+000.00E+001.00E+031.00E+00	0.12501.00E+030.00E+00
209	5.72E+080.00E+000.00E+001.00E+031.00E+00	0.35001.00E+030.00E+00
210	5.25E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
	8.63E+080.00E+000.00E+001.00E+031.00E+00	0.10001.00E+030.00E+00
211		
212	5.32E+080.00E+000.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
213	7.85E+080.00E+000.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
214	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.37501.00E+030.00E+00
216	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.12501.00E+030.00E+00
218	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
219	5.23E+080.00E+000.00E+001.00E+031.00E+00	0.35001.00E+030.00E+00

220	7.01E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
221	3.86E+080.00E+000.00E+001.00E+031.00E+00	0.10001.00E+030.00E+00
222	4.13E+080.00E+000.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
223	6.79E+080.00E+000.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
224	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.37501.00E+030.00E+00
226	4.75E+080.00E+000.00E+001.00E+031.00E+00	0.12501.00E+030.00E+00
227	1.03E+090.00E+000.00E+001.00E+031.00E+00	0.27501.00E+030.00E+00
228	2.40E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
229	4.70E+080.00E+000.00E+001.00E+031.00E+00	0.35001.00E+030.00E+00
230	4.97E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
231	4.21E+080.00E+000.00E+001.00E+031.00E+00	0.10001.00E+030.00E+00
232	5.66E+080.00E+000.00E+001.00E+031.00E+00	0.40001.00E+030.00E+00
233	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.15001.00E+030.00E+00
234	5.00E+080.00E+000.00E+001.00E+031.00E+00	0.37501.00E+030.00E+00
236	1.05E+090.00E+000.00E+001.00E+031.00E+00	0.12501.00E+030.00E+00
237	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.27501.00E+030.00E+00
238	4.36E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
239	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.35001.00E+030.00E+00
240	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
241	6.47E+080.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
242	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
243	6.78E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
244	2.47E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
246	5.10E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
248	5.07E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
249	8.36E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
250	4.72E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
251	4.86E+080.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
252	6.36E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
253	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
254	6.57E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
256	1.19E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
258	5.44E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
259	5.36E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
260	8.68E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
261	4.63E+080.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
262	5.85E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
263	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
264	5.87E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
265	2.22E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
266	5.72E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
267	5.25E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
268	8.63E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
269	5.32E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
270	7.85E+080.00E+000.00E+001.00E+031.00E+00	1.50001.00E+030.00E+00
272	0.00E+000.00E+000.00E+001.00E+031.00E+00	2.40001.00E+030.00E+00
273	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.90001.00E+030.00E+00
274	2.30E+080.00E+000.00E+001.00E+031.00E+00	1.95001.00E+030.00E+00
275	5.23E+080.00E+000.00E+001.00E+031.00E+00	0.90001.00E+030.00E+00
276	7.01E+080.00E+000.00E+001.00E+031.00E+00	0.75001.00E+030.00E+00
	3.86E+080.00E+000.00E+001.00E+031.00E+00	1.65001.00E+030.00E+00
277		
279	4.13E+080.00E+000.00E+001.00E+031.00E+00	2.10001.00E+030.00E+00
280	6.79E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
282	0.00E+000.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
283	4.75E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
284	1.03E+090.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
	2.40E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
285		
286	4.70E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
287	4.97E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
288	4.21E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
289	5.66E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
290	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
291	5.00E+080.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
292	1.05E+090.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
293	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
294	4.36E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
295	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
296	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
297	4.70E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
	4.97E+080.00E+000.00E+001.00E+031.00E+00 4.97E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
298		
299	4.21E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00

300	5.66E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
301	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
302	5.00E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
303	1.05E+090.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
304	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
306	4.36E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
307	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
308	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
309	4.70E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
310	4.97E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
312	4.21E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
313	5.66E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
314	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
316	5.00E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
319	1.05E+090.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
320	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
321	4.36E+080.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
322	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
323	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
324	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
325	1.03E+090.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
326	2.40E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
328	4.70E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
329	4.97E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
330	4.21E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
332	5.66E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
333	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
334	5.00E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
335	1.05E+090.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
336	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
337	4.36E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
338	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
339	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
340	4.70E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
341	4.97E+080.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
342	4.21E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
343	5.66E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
344	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
346	5.00E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
347	1.05E+090.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
349	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
350	4.36E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
351	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
352	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
353	4.70E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
354	4.97E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
355	4.21E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
356	5.66E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
357	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
359	5.00E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
360	1.05E+090.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
362	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
	4.36E+080.00E+000.00E+001.00E+031.00E+00	
363		0.30001.00E+030.00E+00
364	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
365	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
366	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
367	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
368	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
369	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
370	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
371	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.20001.00E+030.00E+00
372	4.68E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00
373	4.56E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
374	4.70E+080.00E+000.00E+001.00E+031.00E+00	0.65001.00E+030.00E+00
375	4.97E+080.00E+000.00E+001.00E+031.00E+00	0.30001.00E+030.00E+00
376	4.21E+080.00E+000.00E+001.00E+031.00E+00	0.25001.00E+030.00E+00
377	5.66E+080.00E+000.00E+001.00E+031.00E+00	0.55001.00E+030.00E+00
378	5.20E+080.00E+000.00E+001.00E+031.00E+00	0.01001.00E+030.00E+00
	5.00E+080.00E+000.00E+001.00E+031.00E+00	0.70001.00E+030.00E+00
379		
380	1.05E+090.00E+000.00E+001.00E+031.00E+00	0.50001.00E+030.00E+00
382	2.30E+080.00E+000.00E+001.00E+031.00E+00	0.80001.00E+030.00E+00

 383
 4.36E+080.00E+000.00E+001.00E+031.00E+00
 0.30001.00E+030.00E+00

 384
 4.68E+080.00E+000.00E+001.00E+031.00E+00
 0.65001.00E+030.00E+00

 386
 4.56E+080.00E+000.00E+001.00E+031.00E+00
 0.25001.00E+030.00E+00

 389
 4.56E+080.00E+000.00E+001.00E+031.00E+00
 0.70001.00E+030.00E+00

 END QUAL-INPUT
 0.70001.00E+030.00E+00
 0.70001.00E+030.00E+00

MON-ACCUM

М	ON-ACCU	M
* * *	<pls></pls>	> Value at start of each month for accum rate of QUALOF (lb/ac.day)
* * *	x- x	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
	10	14E0814E0820E0827E0827E0833E0833E0833E0827E0820E0820E0814E08
	11	50E0650E0650E0650E0650E0650E0650E0650E0
	12	72E0885E0880E0980E0980E0920E0720E0720E0720E0980E0980E0972E08
	13	30E0720E0720E0720E0720E0720E0720E0720E07
	14	27E0829E0832E0831E0829E0835E0835E0835E0830E0831E0829E0828E08
	15	45E0845E0845E0845E0845E0845E0845E0845E08
	16	31E0830E0829E0828E0827E0827E0825E0825E0825E0824E0825E0828E08
	17	26E0828E0831E0831E0828E0828E0828E0828E0829E0830E0829E0827E08
	18	70E0170E0170E0170E0170E0170E0170E0170E0
	19	83E0683E0683E0683E0683E0683E0683E0683E06
	20	80E0790E0710E0812E0812E0813E0813E0813E0812E0810E0890E0780E07
	22	10E0710E0710E0710E0710E0710E0710E0710E0
	23	30E0730E0730E0730E0730E0730E0730E0730E0
	24	90E0711E0810E0810E0810E0810E0810E0810E081
	26	19E0819E0818E0817E0817E0816E0815E0815E0815E0815E0815E0817E08
	27	90E0711E0811E0811E0811E0811E0811E0811E081
	28	20E0120E0120E0120E0120E0120E0120E0120E0
	29	82E0682E0682E0682E0682E0682E0682E0682E06
	30 31	70E0780E0790E0711E0811E0812E0812E0812E0811E0890E0780E0770E07 13E0613E0613E0613E0613E0613E0613E0613E06
	32	86E0620E0770E0760E0720E0720E0720E0720E0730E0730E0730E073
	33	30E0730E0730E0730E0730E0720E0720E0720E07
	34	70E0710E0814E0813E0890E0790E0790E0790E0711E0811E0890E0770E07
	35	57E0657E0657E0657E0657E0657E0657E0657E06
	36	21E0820E0819E0819E0818E0818E0817E0817E0817E0816E0817E0819E08
	37	70E0710E0815E0813E0890E0790E0790E0790E0711E0811E0890E0770E07
	38	20E0120E0120E0120E0120E0120E0120E0120E0
	39	10E0710E0710E0710E0710E0710E0710E0710E0
	40	31E0833E0849E0867E0867E0883E0883E0883E0867E0849E0847E0831E08
	42	30E0940E0939E1039E1039E1010E0710E0710E0712E1039E1039E1030E09
	43	30E0730E0730E0730E0730E0730E0730E0730E0
	44	54E0859E0864E0873E0878E0820E0920E0920E0985E0884E0875E0866E08
	46	12E0812E0811E0811E0811E0810E0810E0810E08
	47	53E0858E0862E0872E0877E0879E0882E0882E0884E0883E0874E0865E08
	48	80E0180E0180E0180E0180E0180E0180E0180E0
	49	53E0653E0653E0653E0653E0653E0653E0653E06
	50	80E0790E0710E0812E0812E0813E0813E0813E0812E0810E0890E0780E07
	52	10E0720E0750E0740E0720E0720E0720E0720E0730E0730E0730E0710E07
	53	30E0730E0730E0730E0730E0730E0720E0720E07
	54	80E0710E0813E0812E0810E0810E0890E0790E0710E0810E0890E0780E07
	55	30E0530E0530E0530E0530E0530E0530E0530E0
	56 57	80E0780E0780E0770E0770E0770E0770E0770E0
	58	60E0160E0160E0160E0160E0160E0160E0160E0
	59	87E0687E0687E0687E0687E0687E0687E0687E06
	60	70E0780E0780E0711E0811E0812E0812E0812E0811E0880E0780E0770E07
	61	10E0710E0710E0710E0710E0710E0710E0710E0
	62	85E0610E0720E0720E0710E0710E0710E0710E0710E07
	63	40E0740E0740E0740E0740E0740E0730E0730E07
	64	50E0760E0770E0780E0780E0770E0770E0770E0780E0760E076
	65	23E0623E0623E0623E0623E0623E0623E0623E06
	66	47E0846E0844E0843E0841E0840E0838E0838E0838E0837E0838E0843E08
	67	60E0770E0780E0710E0890E0790E0790E0790E0790E0780E0770E0760E07
	68	20E0120E0120E0120E0120E0120E0120E0120E0
	69	91E0691E0691E0691E0691E0691E0691E0691E06
	70	12E0812E0813E0815E0815E0816E0816E0816E0815E0813E0813E0812E08
	71	54E0654E0654E0654E0654E0654E0654E0654E06
	72	10E0710E0710E0710E0710E0710E0710E0710E0
	73	20E0720E0720E0710E0710E0710E0710E0710E07
	74	80E0780E0780E0780E0780E0780E0780E0780E0
	76	20E0819E0818E0818E0817E0817E0816E0816E0816E0816E0816E0818E08

77	80E0790E0790E0790E0790E0780E0780E0780E07
79	10E0710E0710E0710E0710E0710E0710E0710E0
80	10E0811E0811E0811E0811E0811E0811E0811E0
83	20E0720E0720E0720E0710E0710E0710E0710E07
84	30E0730E0730E0730E0730E0730E0730E0730E0
86	62E0861E0858E0856E0855E0854E0851E0851E0851E0849E0851E0856E08
87	50E0750E0750E0750E0750E0750E0750E0750E0
89	30E0730E0730E0730E0730E0730E0730E0730E0
90	60E0760E0770E0770E0770E0770E0770E0770E0
91	11E0611E0611E0611E0611E0611E0611E0611E0
92	53E0620E0760E0750E0720E0720E0720E0720E0730E0730E0730E0753E06
93	40E0740E0740E0740E0740E0740E0740E0740E0
94	30E0740E0780E0770E0740E0740E0740E0740E0750E0750E075
95	40E0540E0540E0540E0540E0540E0540E0540E0
96	13E0813E0812E0812E0812E0811E0811E0811E0811E0810E0811E0812E08
97	30E0750E0790E0780E0750E0750E0750E0750E0760E0760E0750E0730E07
98	12E0212E0212E0212E0212E0212E0212E0212E0
99	10E0710E0710E0710E0710E0710E0710E0710E0
100	90E0790E0710E0811E0811E0811E0811E0811E0811E081
102	30E0730E0730E0730E0730E0730E0730E0730E0
103	60E0760E0750E0750E0750E0750E0750E0750E07
104	70E0780E0770E0770E0770E0770E0770E0770E0
105	15E0615E0615E0615E0615E0615E0615E0615E06
106	47E0846E0844E0843E0841E0840E0838E0838E0838E0837E0838E0843E08
107	60E0770E0770E0770E0770E0760E0760E0760E0
108	31E0231E0231E0231E0231E0231E0231E0231E02
109	20E0720E0720E0720E0720E0720E0720E0720E0
110	90E0710E0811E0812E0812E0813E0813E0813E0812E0811E0810E0890E07
111	10E0710E0710E0710E0710E0710E0710E0710E0
112	10E0740E0715E0812E0840E0740E0740E0740E0770E0770E0770E0710E07
113	50E0750E0740E0740E0740E0740E0740E0740E07
114	10E0814E0825E0822E0813E0813E0813E0813E0816E0816E0816E0815E0810E08
115	49E0649E0649E0649E0649E0649E0649E0649E06
116	17E0816E0816E0816E0816E0815E0815E0815E0815E0815E0815E0815E0816E08
117	10E0815E0826E0823E0814E0814E0814E0814E0817E0817E0816E0810E08
118	40E0140E0140E0140E0140E0140E0140E0140E0
	10E0710E0710E0710E0710E0710E0710E0710E0
119	
120	70E0770E0770E0770E0770E0770E0770E0770E
121	22E0622E0622E0622E0622E0622E0622E0622E0
122	10E0720E0750E0740E0720E0720E0720E0720E0730E0730E0730E0710E07
123	30E0730E0730E0730E0730E0730E0730E0730E0
124	40E0750E0770E0770E0750E0750E0750E0750E07
125	60E0560E0560E0560E0560E0560E0560E0560E0
126	18E0818E0817E0817E0816E0816E0815E0815E0815E0814E0815E0817E08
127	30E0740E0770E0760E0740E0740E0740E0740E0750E0750E0750E0730E07
	60E0160E0160E0160E0160E0160E0160E0160E0
128	
129	10E0710E0710E0710E0710E0710E0710E0710E0
130	10E0810E0810E0810E0810E0810E0810E0810E0
131	00.0000.0000.0000.0000.0000.0000.0000.0000
134	60E0760E0760E0760E0760E0760E0760E0760E0
136	15E0815E0814E0814E0813E0813E0812E0812E0812E0812E0812E0814E08
137	60E0760E0760E0760E0760E0760E0760E0760E0
139	10E0710E0710E0710E0710E0710E0710E0710E0
140	90E0790E0713E0817E0817E0821E0821E0821E0817E0813E0813E0890E07
142	10E0910E0913E1013E1013E1060E0750E0750E0740E0913E1013E1010E09
143	60E0750E0750E0750E0750E0750E0740E0740E074
144	15E0819E0831E0829E0820E0837E0838E0838E0824E0824E0824E0817E08
145	32E0632E0632E0632E0632E0632E0632E0632E06
146	32E0831E0829E0829E0828E0827E0826E0826E0826E0825E0826E0829E08
147	15E0818E0830E0829E0820E0820E0820E0820E0824E0824E0823E0816E08
148	70E0170E0170E0170E0170E0170E0170E0170E0
149	10E0710E0710E0710E0710E0710E0710E0710E0
150	50E0750E0750E0750E0750E0750E0750E0750E0
152	10E0730E0790E0780E0730E0730E0730E0730E0750E0740E0750E0710E07
153	50E0750E0750E0750E0750E0740E0740E0740E07
154	20E0740E0710E0890E0730E0730E0730E0730E0750E0750E0750E075
155	27E0627E0627E0627E0627E0627E0627E0627E06
156	10E0810E0890E0790E0790E0780E0780E0780E0780E078
157	20E0740E0711E0890E0740E0740E0740E0740E0760E0760E0760E076
159	10E0710E0710E0710E0710E0710E0710E0710E0
160	90E0790E0713E0817E0817E0820E0820E0820E0817E0813E0812E0890E07

161	15E0615E0615E0615E0615E0615E0615E0615E06
162	81E0810E0990E0990E0990E0960E0760E0760E0730E0990E0990E0981E08
163	40E0740E0740E0740E0740E0740E0730E0730E07
164	16E0822E0843E0839E0823E0837E0838E0838E0830E0830E0829E0817E08
165	27E0627E0627E0627E0627E0627E0627E0627E06
166	22E0821E0820E0820E0820E0819E0818E0818E0818E0818E0818E0818E0820E08
167	17E0823E0844E0840E0824E0824E0825E0825E0831E0830E0830E0818E08
169	10E0710E0710E0710E0710E0710E0710E0710E0
170	10E0810E0813E0816E0816E0819E0819E0819E0816E0813E0813E0810E08
172	78E0891E0890E0990E0990E0992E0692E0692E0630E0990E0990E0978E08
173	90E0790E0780E0780E0780E0770E0770E0770E07
174	15E0816E0816E0817E0817E0823E0823E0823E0817E0817E0816E0816E08
176	53E0852E0849E0848E0846E0845E0842E0842E0842E0841E0842E0848E08
177	15E0816E0816E0817E0817E0817E0817E0817E0817E0817E0817
178	00.0000.0000.0000.0000.0000.0000.0000.0000
179	$10{\rm E}0710{\rm E}071$
180	60E0760E0760E0760E0760E0760E0760E0760E0
181	10E0710E0710E0710E0710E0710E0710E0710E0
182	92E0692E0692E0692E0692E0692E0692E0692E06
183	30E0720E0720E0720E0720E0720E0720E0720E07
184	20E0720E0720E0720E0720E0720E0720E0720E0
186	25E0825E0824E0823E0823E0823E0822E0822E0822E0822E0822
188	00.0000.0000.0000.0000.0000.0000.0000.0000
189	82E0682E0682E0682E0682E0682E0682E0682E06
190	60E0760E0760E0760E0760E0760E0760E0760E0
191	14E0614E0614E0614E0614E0614E0614E0614E06
192	10E0740E0714E0812E0840E0740E0740E0740E0760E0760E0760E0760E07
193	$10{\rm E}0710{\rm E}071$
194	20E0750E0715E0813E0850E0750E0750E0750E0780E0770E0780E0720E07
195	50E0550E0550E0550E0550E0550E0550E0550E
196	42E0841E0840E0839E0838E0838E0836E0836E0836E0836E0835E0836E0839E08
199	10E0710E0710E0710E0710E0710E0710E0710E0
200	90E0790E0790E0790E0790E0790E0790E0790E0
201	48E0648E0648E0648E0648E0648E0648E0648E06
203	30E0730E0730E0730E0730E0730E0730E0730E0
204	20E0720E0720E0720E0720E0720E0720E0720E0
206	11E0811E0811E0811E0811E0810E0810E0810E0
209	10E0710E0710E0710E0710E0710E0710E0710E0
210	90E0790E0790E0790E0790E0790E0790E0790E0
211	44E0644E0644E0644E0644E0644E0644E0644E0
212	54E0654E0654E0654E0654E0654E0654E0654E06
213	10E0710E0710E0710E0710E0710E0710E0710E0
214	20E0720E0720E0720E0720E0720E0720E0720E0
216	80E0780E0780E0770E0770E0770E0770E0770E0
218	20E0120E0120E0120E0120E0120E0120E0120E0
219	10E0710E0710E0710E0710E0710E0710E0710E0
220	$11 \pm 0811 \pm 0814 \pm 0817 \pm 0817 \pm 0821 \pm 0821 \pm 0821 \pm 0817 \pm 0814 \pm 0814 \pm 0811 \pm 0814 \pm 08144 \pm 0814 \pm 0$
221	11E0611E0611E0611E0611E0611E0611E0611E0
222	70E0980E0976E1076E1076E1053E0653E0653E0622E1076E1076E1070E09
	10E0710E0710E0710E0710E0710E0710E0710E0
223	
224	12E0812E0813E0814E0814E0826E0826E0826E0815E0815E0814E0814E08
226	11E0811E0811E0811E0811E0811E0811E0811E0
227	11E0811E0812E0812E0813E0813E0813E0813E0814E0814E0814E0813E0813E08
228	20E0120E0120E0120E0120E0120E0120E0120E0
229	85E0685E0685E0685E0685E0685E0685E0685E06
230	80E0780E0710E0812E0812E0814E0814E0814E0814E0812E0810E0810E0880E07
231	12E0612E0612E0612E0612E0612E0612E0612E06
232	40E0950E0944E1044E1044E1030E0730E0730E0713E1044E1044E1040E09
233	88E0687E0685E0684E0683E0682E0680E0680E0680E0678E0680E0684E06
234	11E0811E0811E0812E0812E0821E0822E0822E08
236	50E0750E0750E0750E0750E0750E0750E0750E0
237	10E0810E0810E0811E0811E0811E0812E0812E08
238	90.0090.0090.0090.0090.0090.0090.0090.0090.0090.0090.0090.0090.00
239	20E0720E0720E0720E0720E0720E0720E0720E0
240	11E0811E0815E0820E0820E0825E0825E0825E0820E0815E0815E0811E08
241	15E0615E0615E0615E0615E0615E0615E0615E06
242	12E1014E1010E1110E1110E1157E0657E0657E0641E1010E1110E1112E10
243	30E0730E0720E0720E0720E0720E0720E0720E07
244	12E0812E0813E0814E0814E0826E0826E0826E0815E0815E0815E0815E0814E08
244 246	11E0811E0810E0810E0810E0810E0810E0810E0
248	20E0120E0120E0120E0120E0120E0120E0120E0

249	92E0692E0692E0692E0692E0692E0692E0692E06
250	70E0770E0790E0711E0811E0812E0812E0812E0811E0890E0790E0770E07
251	82E0682E0682E0682E0682E0682E0682E0682E06
252	70E0881E0880E0980E0980E0910E0710E0710E0720E0980E0980E0970E08
253	20E0720E0720E0720E0720E0720E0720E0720E0
254	10E0810E0810E0811E0811E0817E0817E0817E08
256	70E0770E0760E0760E0760E0760E0760E0760E0
258	00.0000.0000.0000.0000.0000.0000.0000.0000
259	10E0710E0710E0710E0710E0710E0710E0710E0
260	70E0780E0780E0790E0790E0710E0810E0810E0890E0780E0780E0770E07
261	10E0610E0610E0610E0610E0610E0610E0610E0
262	20E0720E0720E0720E0720E0720E0720E0720E0
263	20E0720E0720E0720E0720E0720E0720E0720E0
264	60E0760E0760E0760E0760E0760E0760E0760E0
265	50E0750E0750E0750E0750E0750E0750E0750E0
266	30E0829E0828E0827E0826E0825E0824E0824E0824E0823E0824E0827E08
267	60E0760E0760E0760E0760E0760E0760E0760E0
268	60E0160E0160E0160E0160E0160E0160E0160E0
269	10E0710E0710E0710E0710E0710E0710E0710E0
270	90E0790E0711E0814E0814E0817E0817E0817E0814E0811E0811E0890E07
272	48E0857E0850E0950E0950E0920E0720E0720E0720E0950E0950E0948E08
273	30E0730E0730E0730E0730E0720E0720E0720E07
274	$12 \pm 0814 \pm 0818 \pm 0817 \pm 0814 \pm 0820 \pm 0820 \pm 0820 \pm 0816 \pm 0815 \pm 0812 \pm 08$
275	10E0610E0610E0610E0610E0610E0610E0610E0
276	78E0876E0872E0870E0868E0866E0862E0862E0862E0860E0862E0870E08
277	13E0814E0818E0818E0815E0815E0815E0815E0816E0816E0816E0815E0813E08
279	20E0720E0720E0720E0720E0720E0720E0720E0
280	12E0813E0814E0816E0816E0818E0818E0818E0816E0814E0814E0812E08
282	61E0680E0734E0828E0870E0780E0770E0770E0715E0814E0815E0861E06
283	20E0720E0720E0720E0720E0720E0720E0720E0
284	80E0717E0843E0837E0816E0816E0816E0816E0823E0823E0822E0880E07
285	11E0611E0611E0611E0611E0611E0611E0611E0
286	39E0838E0836E0835E0834E0833E0831E0831E0831E0830E0831E0835E08
287	80E0716E0842E0836E0815E0816E0815E0815E0823E0822E0822E0880E07
288	00.0000.0000.0000.0000.0000.0000.0000.0000
289	20E0720E0720E0720E0720E0720E0720E0720E0
290	80E0790E0711E0813E0813E0815E0815E0815E0813E0811E0810E0880E07
291	12E0612E0612E0612E0612E0612E0612E0612E06
292	75E0889E0880E0980E0980E0920E0720E0720E0730E0980E0980E0975E08
293	20E0720E0720E0720E0720E0720E0710E0710E07
294	90E0711E0815E0814E0811E0815E0815E0815E0813E0813E0812E0810E08
295	80E0580E0580E0580E0580E0580E0580E0580E0
296	13E0813E0812E0812E0812E0812E0812E0812E0812E0811E0812E0812
297	10E0812E0815E0814E0812E0812E0812E0812E0813E0813E0812E0810E08
298	50E0150E0150E0150E0150E0150E0150E0150E0
299	10E0710E0710E0710E0710E0710E0710E0710E0
300	80E0780E0710E0811E0811E0813E0813E0813E0811E0810E0810
301	70E0570E0570E0570E0570E0570E0570E0570E0
302	64E0874E0870E0970E0970E0920E0720E0720E0720E0970E097
202	1 0 5 0 7 1 0 5 0 7 1 0 5 0 7 1 0 5 0 7 1 0 5 0 7 1 0 5 0 7 1 0 5 0 7 1 0 5 0 7 1 0 5 0 7 1 0 5 0 7 1 0 5 0 7 1
303	10E0710E0710E0710E0710E0710E0710E0710E0
304	70E0770E0770E0780E0780E0713E0813E0813E0880E0780E0780E0780E07
306	60E0760E0760E0760E0760E0760E0760E0760E0
307	60E0760E0760E0770E0770E0770E0770E0770E0
308	00.0000.0000.0000.0000.0000.0000.0000.0000
309	10E0710E0710E0710E0710E0710E0710E0710E0
310	10E0810E0810E0810E0810E0810E0810E0810E0
312	30E0730E0730E0730E0730E0730E0730E0730E0
313	30E0720E0720E0720E0720E0720E0720E0720E07
314	30E0730E0730E0730E0730E0730E0730E0730E0
316	58E0857E0854E0852E0851E0850E0847E0847E0847E0845E0847E0852E08
319	30E0730E0730E0730E0730E0730E0730E0730E0
320	10E0810E0814E0818E0818E0823E0823E0823E0823E0818E0814E0814E0810E08
321	30E0530E0530E0530E0530E0530E0530E0530E0
322	52E0862E0860E0960E0960E0930E0730E0730E0720E0960E0960E0952E08
323	20E0720E0720E0720E0720E0720E0710E0710E07
324	15E0817E0821E0821E0818E0831E0832E0832E0820E0820E0820E0817E08
325	11E0611E0611E0611E0611E0611E0611E0611E0
326	80E0780E0780E0770E0770E0770E0770E0770E0
328	00.0000.0000.0000.0000.0000.0000.0000.0000
329	20E0720E0720E0720E0720E0720E0720E0720E0
330	18E0819E0824E0830E0830E0835E0835E0835E0835E0830E0824E0823E0818E08
550	T0E0017E0024E0030E0030E0033E0033E0033E0030E0024E0023E0818E08

332	47E0859E0850E0950E0950E0960E0760E0760E0720E0950E0950E0947E08
333	40E0740E0740E0740E0740E0740E0730E0730E07
334	15E0821E0837E0834E0822E0831E0831E0831E0827E0827E0825E0816E08
335	14E0614E0614E0614E0614E0614E0614E0614E06
336	30E0930E0920E0920E0920E0920E0920E0920E09
337	14E0820E0836E0833E0821E0821E0821E0821E0826E0825E0824E0815E08
338	00.0000.0000.0000.0000.0000.0000.0000.0000
339	91E0691E0691E0691E0691E0691E0691E0691E06
340	12E0812E0817E0823E0823E0828E0828E0828E0823E0817E0817E0812E08
341	12E0612E0612E0612E0612E0612E0612E0612E06
342	63E0873E0870E0970E0970E0910E0710E0710E0720E0970E0970E0963E08
343	30E0730E0720E0720E0720E0720E0720E0720E07
344	19E0821E0821E0822E0823E0837E0838E0838E0824E0824E0822E0821E08
346	12E0811E0811E0811E0810E0810E0810E0810E08
347	19E0820E0821E0821E0822E0822E0823E0823E0823E0823E0823E0821E0820E08
349	20E0720E0720E0720E0720E0720E0720E0720E0
350	12E0813E0818E0823E0823E0827E0827E0827E0823E0818E0817E0812E08
351	52E0652E0652E0652E0652E0652E0652E0652E06
352	66E0879E0870E0970E0970E0940E0740E0740E0720E0970E0970E0966E08
353	10E0710E0710E0710E0710E0710E0710E0710E0
354	18E0822E0832E0831E0824E0836E0837E0837E0827E0827E0825E0820E08
355	00.0000.0000.0000.0000.0000.0000.0000.0000
356	15E0815E0814E0814E0814E0813E0813E0813E0813E0812E0813E0814E08
357	18E0822E0832E0831E0824E0824E0824E0824E0827E0827E0827E0826E0820E08
359	20E0720E0720E0720E0720E0720E0720E0720E0
360	10E0811E0811E0813E0813E0814E0814E0814E0813E0811E0811E0810E08
362	99E0650E0719E0816E0850E0750E0750E0750E0790E0780E0790E0799E06
363	10E0710E0710E0710E0710E0710E0710E0710E0
364	70E0712E0827E0823E0812E0812E0812E0812E0816E0816E0816E0814E0870E07
365	90E0590E0590E0590E0590E0590E0590E0590E0
366	16E0815E0815E0814E0814E0814E0813E0813E0813E0813E0813E0813E0814E08
367	60E0711E0825E0822E0811E0811E0810E0810E0814E0814E0813E0860E07
368	80E0180E0180E0180E0180E0180E0180E0180E0
369	20E0720E0720E0720E0720E0720E0720E0720E0
370	16E0817E0826E0836E0836E0846E0846E0846E0836E0826E0826E0816E08
371	61E0661E0661E0661E0661E0661E0661E0661E0
372	64E0876E0870E0970E0970E0930E0730E0730E0720E0970E0970E0964E08
373	10E0710E0710E0710E0710E0710E0710E0710E0
374	35E0839E0847E0847E0842E0868E0869E0869E0846E0846E0844E0838E08
375	60E0560E0560E0560E0560E0560E0560E0560E0
376	50E0750E0750E0750E0750E0750E0750E0750E0
377	37E0841E0849E0849E0844E0844E0844E0844E0844E0847E0848E0845E0840E08
378	50E0150E0150E0150E0150E0150E0150E0150E0
379	20E0720E0720E0720E0720E0720E0720E0720E0
380	27E0828E0843E0858E0858E0873E0873E0873E0858E0843E0842E0827E08
382	59E0869E0870E0970E0970E0984E0684E0684E0620E0970E0970E0959E08
383	20E0720E0720E0720E0720E0720E0720E0720E0
384	53E0854E0856E0859E0862E0810E0910E0910E0965E0865E0862E0859E08
386	50E0740E0740E0740E0740E0740E0740E0740E07
389	20E0720E0720E0720E0720E0720E0720E0720E0
END MO	N-ACCUM
MONT OF	DOT TM
MON-SÇ	JOPTW TW

MON-S	LIM	
*** <pl< td=""><td>> Value at start of month for limiting storage of QUALOF</td><td>(lb/ac)</td></pl<>	> Value at start of month for limiting storage of QUALOF	(lb/ac)
*** x-	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DE	C
10	56E0856E0812E0921E0921E0939E0939E0939E0921E0912E0980E0856	E08
11	20E0720E0720E0740E0740E0740E0740E0740E07	E07
12	14E0934E0948E1080E1080E1020E0820E0820E0824E1048E1032E1014	E09
13	12E0812E0816E0824E0824E0824E0820E0820E0820E0812E0880E0712	E08
14	10E0911E0919E0937E0917E0942E0942E0942E0942E0918E0911E0911	E09
15	18E0918E0918E0936E0936E0936E0936E0936E0936E0918E0918E0918	E09
16	12E0912E0917E0922E0921E0921E0920E0920E0920E0914E0910E0911	E09
17	10E0911E0918E0937E0922E0922E0922E0922E0917E0918E0911E0910	E09
18	28E0228E0242E0270E0270E0270E0270E0270E0270E0270	E02
19	33E0733E0733E0783E0783E0783E0783E0783E07	E07
20	32E0836E0860E0812E0912E0913E0913E0913E0912E0960E0836E0832	E08
22	60E0760E0780E0712E0812E0812E0812E0812E0812E0812E0880E0760E0760	E07
23	12E0812E0818E0830E0830E0830E0830E0830E0830E0830	E08
24	36E0844E0860E0810E0910E0910E0910E0910E0910E0960E0832E0836	E08
26	11E0911E0914E0920E0920E0919E0921E0921E0921E0912E0990E0810	E09
27	36E0844E0866E0811E0911E0911E0911E0911E0911E0966E0836E0836	E08

28	80E0180E0112E0216E0216E0216E0216E0216E0216E021
29	32E0732E0732E0782E0782E0782E0782E0782E0782E0732E0732E0732E07
30	14E0816E0827E0855E0855E0860E0860E0860E0855E0827E0816E0814E08
31	39E0639E0665E0610E0710E0710E0710E0710E0710E0765E0639E0639E06
32	17E0740E0721E0830E0812E0812E0812E0812E0818E0890E0760E0717E07
33	60E0760E0790E0712E0812E0812E0812E0812E0812E0880E0760E0760E07
34	14E0820E0842E0865E0845E0845E0845E0845E0855E0833E0818E0814E08
35	11E0711E0722E0728E0728E0728E0728E0728E0728E0728
36	42E0840E0857E0895E0890E0890E0885E0885E0885E0848E0834E0838E08
37	14E0820E0845E0865E0845E0845E0845E0845E0845E0855E0833E0818E0814E08
38	40E0140E0160E0110E0210E0210E0210E0210E0210E0260E0140E0140E01
39	20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07
40	62E0866E0898E0826E0926E0941E0941E0941E0926E0998E0894E0862E08
42	60E0980E0911E1119E1119E1170E0770E0770E0760E1011E1178E1060E09
43	60E0760E0790E0715E0815E0815E0815E0815E0815E0890E0760E0760E07
44	10E0911E0919E0936E0939E0910E1010E1010E1042E0933E0975E0813E09
46	36E0836E0844E0877E0877E0877E0870E0870E0870E0870
47	10E0911E0918E0943E0938E0939E0941E0941E0942E0916E0974E0813E09
48	16E0216E0224E0240E0240E0240E0240E0240E0240E024
49	10E0710E0721E0731E0731E0731E0731E0731E0731E0721E0710E0710E07
50	16E0818E0830E0860E0860E0865E0865E0865E0860E0830E0818E0816E08
52	30E0740E0715E0824E0810E0812E0810E0810E0815E0890E0760E0730E07
53	60E0760E0790E0712E0812E0812E0812E0812E0812E0880E0760E0760E07
54	16E0820E0839E0860E0850E0850E0845E0845E0850E0830E0818E0816E08
55	60E0560E0590E0515E0615E0615E0615E0615E0615E0690E0560E0560E05
56	24E0824E0832E0849E0849E0849E0849E0849E0849E0849E0828E0821E0821E08
57	16E0820E0839E0860E0850E0850E0850E0850E0850E0833E0818E0816E08
58	12E0212E0218E0230E0230E0230E0230E0230E0230E0230E0218E0212E0212E02
59	17E0717E0726E0743E0743E0743E0743E0743E0743E0743E0726E0717E0717E07
60	42E0848E0872E0816E0916E0918E0918E0918E0916E0972E0848E0842E08
61	60E0760E0790E0715E0815E0815E0815E0815E0815E0890E0760E0760E07
62	51E0760E0724E0830E0818E0818E0818E0818E0821E0812E0890E0751E07
63	24E0824E0836E0860E0860E0860E0845E0845E0845E0827E0818E0824E08
64	30E0836E0863E0812E0912E0910E0910E0910E0912E0954E0836E0830E08
65	13E0713E0720E0727E0727E0727E0727E0727E0727E072
66	28E0927E0926E0964E0961E0960E0957E0957E0957E0933E0922E0925E09
67	36E0842E0872E0815E0913E0913E0913E0913E0913E0972E0842E0836E08
68	18E0218E0224E0236E0236E0236E0236E0236E0236E0236E0224E0218E0218E02
69	54E0754E0781E0713E0813E0813E0813E0813E0813E0881E0754E0754E07
70	24E0824E0839E0875E0875E0880E0880E0880E0875E0839E0826E0824E08
71	21E0721E0732E0737E0737E0737E0737E0737E0737E0737
72	30E0730E0740E0760E0760E0760E0760E0760E0760E0740E0730E0730E07
73	40E0740E0760E0770E0770E0770E0770E0770E07
74	16E0816E0824E0840E0840E0840E0840E0840E0840E0840
76	60E0857E0872E0810E0910E0910E0996E0896E0896E0860E0848E0854E08
77	16E0818E0827E0845E0845E0840E0840E0840E0845E0827E0816E0816E08
79	30E0730E0740E0770E0770E0770E0770E0770E07
80	60E0866E0899E0816E0916E0916E0916E0916E0916E0999E0860E0860E08
83	12E0812E0818E0824E0821E0821E0821E0821E0821E0812E0890E0712E08
84	18E0818E0827E0845E0845E0845E0845E0845E0845E0845E0827E0818E0818E08
86	55E0954E0952E0911E1011E1011E1012E1012E1012E1058E0930E0967E09
87	30E0830E0845E0875E0875E0875E0875E0875E0875E0845E0830E0830E08
89	18E0818E0827E0845E0845E0845E0845E0845E0845E0845E0845
90	24E0824E0842E0870E0870E0870E0870E0870E0870E0842E0824E0824E08
91	44E0644E0666E0611E0711E0711E0711E0711E0711E0766E0644E0644E06
92	21E0780E0736E0850E0816E0816E0816E0816E0830E0818E0812E0821E07
93	16E0816E0824E0840E0840E0840E0840E0840E0840E0818E0816E0816E08
94	12E0816E0848E0870E0840E0840E0840E0840E0850E0830E0820E0812E08
95	16E0616E0624E0640E0640E0640E0640E0640E0640E064
96	52E0852E0872E0812E0912E0911E0911E0911E0911E0960E0844E0848E08
97	12E0820E0854E0880E0850E0850E0850E0850E0860E0836E0836E0812E08
98	48E0248E0272E0212E0312E0312E0312E0312E0312E0372E0248E0248E02
99	60E0760E0780E0714E0814E0814E0814E0814E0814E0814E0880E0760E0760E07
100	54E0854E0890E0816E0916E0916E0916E0916E0916E0990E0854E0854E08
102	18E0818E0827E0845E0845E0845E0845E0845E0845E0845E0827E0818E0818E08
103	36E0836E0845E0875E0875E0875E0875E0875E0875E0875E0845E0830E0830E08
104	42E0848E0863E0810E0910E0910E0910E0910E0910E0963E0842E0842E08
105	90E0690E0613E0722E0722E0722E0722E0722E0722E0713E0790E0690E06
105	28E0927E0966E0990E0986E0996E0991E0991E0991E0955E0934E0925E09
107	36E0842E0863E0810E0910E0990E0890E0890E0810E0963E0836E0836E08
108	18E0318E0327E0355E0355E0355E0355E0355E0355E0327E0318E0318E03

10 12001120014E0024E0024E0024E0024E0024E002		
111 60 F20 74 60 F20 F20 F30 F30 F30 F30 F30 F30 F30 F30 F30 F3	109	$12 \pm 0812 \pm 0818 \pm 0824 \pm 0824 \pm 0824 \pm 0824 \pm 0824 \pm 0824 \pm 0818 \pm 0812 \pm 08$
111 60 F20 74 60 F20 F20 F30 F30 F30 F30 F30 F30 F30 F30 F30 F3	110	54E0860E0899E0818E0918E0919E0919E0919E0918E0999E0860E0854E08
113 GCR0724000-0006000060000600006000000000000000		
113 3DE 02 3 GEO 2 3 GEO 27 SERVIS COURS GEO DE 6 GEO REGED REGD REG		
114 60208440032x0933x0919x0919x0919x0919x09324x0914x0990x0840050 115 2580729507295075807580575807580758075807580758075807		
115 25607296072960758075807580758075807580729807299072980729907299072990729907 116 10509560314009240922092200922009220035602360224002 117 602096003280927002100210092100921009210092100925003560224002 119 90807900712008350083500835008350083500835008350083		
110 1000990003050927002210922109221092210922091003209920000000000	114	60E0884E0822E0933E0919E0919E0919E0919E0924E0914E0990E0860E08
117 60008000000000000000000000000000000000	115	29E0729E0729E0758E0758E0758E0758E0758E0758E0758E0729E0729E0729E07
117 60008000000000000000000000000000000000	116	10E0996E0814E0924E0924E0922E0922E0922E0922E0913E0990E0896E08
118 24E0224E0236E0260E0260E0260E0260E0260E026E0234E0224E0224E02 119 90E0790E0712E0821E0821E0821E0821E0821E0821E0812E081E0814E0814E08 121 44E0644E0668E0611E0711E0711E0711E0711E0711E0765E06444E0644E06 122 30E0740E0715E0820E0812E0812E0812E0812E0812E0812E0825E0825E0825E0825E0812E081E081E088E007 123 60E0760E079020715E0815E0812E0825E0825E0825E0825E0825E0812E081E086E0760E087 124 60E0760E079020715E0815E0812E0825E0825E0825E0825E0815E0810E0880E07 125 1220612E0815E085E0885E0825E0825E0825E0815E0810E0880E07 126 60E0760E0760E0760E0760E0760E0760E0760E0		
119 9000790007120032100321003210032100321003210032		
14 14 14 14 16<		
121 44E064626611E071E071E071E071E071E071E071E07606076006738067 122 30E0740E07155083250825E0825E0825E0825E0835E0845E0812E0812E0880E0760E0760E07 123 60E0760E0790E071550815E0812E0812E0812E0812E0812E0880E0760E0760E07 124 80E0710E0821E0835E0825E0825E0825E0825E0815E0812E0812E0812E0812E0812E0812E0812E0812		
122 3DED740E0715E0822E0812E0812E0812E0812E0812E0812E0812		
123 60E0760E0790E0715E0815E0825E0825E0825E0825E0825E0815E0810E0880E07 124 80E0710E0621E0835E0825E0825E0825E0825E0825E0815E0810E0880E0812E08112E08112E06112E06 125 122E0612E0615E0835E0885E0880E086208632E08455E0815E0810E0860E07 128 12E0512E021E8032080220802208022080230E0335E0815E0810E0866E07 128 12E0512E0218E0230E0230E0230E0230E0230E0230E0230E023	121	44E0644E0666E0611E0711E0711E0711E0711E0711E0711
124 000071000021003500250025002500300050000000000	122	30E0740E0715E0820E0812E0812E0812E0812E0815E0890E0760E0730E07
12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063	123	60E0760E0790E0715E0815E0812E0812E0812E0812E0812E0880E0760E0760E07
12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063	124	80E0710E0821E0835E0825E0825E0825E0825E0825E0815E0810E0880E07
126 36E0336E0051E0885E0880E0075E0375E0375E042E0330E0314E08 127 60E0780E0721E0830E00230E0230E0230E0230E0230E0230E0218E0312E0212E0212E0212E0218E0230E0230E0230E0230E0230E0230E0212E0212		
127 60E0731E0830E0820E0820E0820E0820E0820E08230E0230E0		
128 1220212802180230E0230E0230E0230E0230E0218021280212802 129 30E0730E0740E0760E0760E0760E0760E0760E0760E076		
129 30E0730E0740E0760E0760E0760E0760E0760E0760E0740E0730E0730E07 130 20E0820E0830E0850E0850E0850E0850E0850E0830E083		
130 205 083 205 083 055 085 056 055 056 085 056 083 056 083 056 083 205 083 205 083 131 00,000,000,000,000,000,000,000,000,000		
131 00,0000,0000,0000,0000,0000,0000,0000		
12 12<	130	20E0820E0830E0850E0850E0850E0850E0850E0850E085
136 4550845500356093608306030603060830608306083060830608	131	00.0000.0000.0000.0000.0000.0000.0000.0000
137 12E0812E0818E0830E0830E0830E0830E0830E0830E0818E0812E0812E08 139 30E0733E0740E0770E0770E0770E0770E0770E07	134	12E0812E0818E0830E0830E0830E0830E0830E0830E0818E0812E0812E08
137 12E0812E0818E0830E0830E0830E0830E0830E0830E0818E0818	136	45E0845E0856E0898E0891E0891E0884E0884E0884E0848E0836E0842E08
139 30E0730E0740E0770E0770E0770E0770E0770E07		12E0812E0818E0830E0830E0830E0830E0830E0830E0830
140 18E0818E0839E0885E083E0810E0910E0910E0985E0839E0826E0818E08 142 20E0930E0939E1065E1035E0825E0825E0824E0824E0832E0832E08812668034E08 143 12E0810E0815E0825E0825E0825E0825E0824E0832E0832E0842E0834E08 144 30E0838E0893E0887E0810E0918E0919E0919E0996E0872E0848E0834E08 145 64E0664E0696E0619E0719E0719E0719E0719E0719E0719E0719E07		
142 20E0930E0939E1065E1065E1030E0825E0825E0825E0822E0822E0822E0832E0824E0822E0880E0710E08 143 12E0810E0815E0825E0825E0825E0822E0824E0824E0824E0812E0880E0710E08 144 050838E0835E083E70830E091BE0919E0919E0910E0920E0872E0845E0834E08 145 64E0664E0696E0619E0719E0719E0719E0719E0719E0719E07796E0664E0664E06 146 96E0893E0887E0820E0919E0910E0910E0910E0990E0872E0845E0832E08 148 14E0214E0221E0235E0235E0235E0235E0235E0235E0235E027020E0720E0720E0720E0720E0720E0710E071		
143 12E0810E0815E0825E0825E0825E0824E0824E0824E0812E0880E0710E08 144 30E0838E083E0837E0810E0915E0915E0996E0872E0848E0834E08 145 64E0644E0695E06159E0715E0719E0719E0795E0596E0647E0644E06 146 96E0893E0887E0820E0919E0916E0920E0920E0920E09120E0978E0847E0837E08 147 30E0837E0820E087E0810E0910E0910E0910E0920E0720E0730E0720E0720E0720E077 148 144E0214E0221E0235E0235E0235E0235E0235E0235E0235E0730E0720E0720E077 150 10E0810E0815E0825E0825E0825E0825E0825E0825E0812E0815E0810E0810E08 152 20E07760E0777E0840E0815E0815E0815E0815E0815E0815E0815E081		
144 30E0838E0893E0887E0810E0918E0919E0919E0996E0872E0848E0834E08 145 64E0664E0696E0619E0719E0719E0719E0719E0719E070E06664E0664E06 146 95E0893E0887E0820E0919E0921E0920E0920E0920E0910E0978E0887E08 147 30E0836E0890E0887E0810E0910E0910E0910E0996E0872E0846E0832E08 148 14E0214E0221E0235E0235E0235E0235E0235E0235E0235E02020E070E0770E0770E0770E0770E0770E077		
145 64E0664E0696E0619E0719E0719E0719E0719E0719E0796E0664E064E06 146 96E0893E0887E08320E0919E091E0920E0920E0920E09120E0978E0887E08 147 30E0835E0895E0887E0810E091DE0910E09905E08722E0846E0832E08 148 14E0214E0221E0235E0235E0235E0235E0235E0235E0235E023E0221E0214E0214E02 149 20E0770E0730E0750E0750E0750E0750E0750E075		
146 96E0893E0887E0820E0919E0918E0920E0920E0920E0910E0978E0887E08 147 30E0836E0890E0887E0810E0910E0910E0910E0996E087220846E0832208 148 144E0214E0221E0235E0235E0235E0235E0235E0235E021214E0214E02 149 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 150 10E0810E0815E0825E0825E0825E0825E0825E0825E0825E082		
147 30E0836E0890E0887E0810E0910E0910E0910E0910E0996E0872E0846E0832E08 148 14E0214E023E0235E0235E0235E0235E0235E0221E0214E0214E02 149 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E0720E07 150 10E0810E0815E0825E0825E0825E0825E0825E0825E0825E0812E0810E0820E07 152 20E0760E0732E0840E0815E0815E0815E0815E0825E0825E0812E0810E0820E07 153 10E0810E0815E0825E0825E0824E0820E0820E0820E0812E0880E0710E08 154 40E0780E07380E073E0845E0818E0818E0818E0818E0818E0825E0815E0816E0840E07 155 54E0654E0681E0610E0710E0710E0710E0710E0710E07081E0654E0654E06 156 20E0820E0827E0845E0820E0820E0820E0820E0830E0818E0812E0840E07 159 30E0730E0740E0770E0770E0770E0770E0770E07	145	64E0664E0696E0619E0719E0719E0719E0719E0719E0719E0796E0664E0664E06
148 14E0214E0221E0235E0235E0235E0235E0235E0235E0235E0221E0214E0214E02 149 20E0720E0730E0750E0750E0750E0750E0750E0730E0720E0720E07 150 10E0810E0815E0825E0825E0825E0825E0825E0825E0815E0810E0810E08810E08 152 20E0760E0777E0840E0815E0815E0815E0815E0815E0825E0825E0825E0825E0825E0825E0825E082	146	96E0893E0887E0820E0919E0918E0920E0920E0920E0910E0978E0887E08
149 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 150 10E081DE0815E0825E0825E0825E0825E0825E0825E0815E0815E0815E0815E0815E0815E0815E081	147	30E0836E0890E0887E0810E0910E0910E0910E0996E0872E0846E0832E08
1000810008150082500825008250082500825008	148	14E0214E0221E0235E0235E0235E0235E0235E0235E0235E0221E0214E0214E02
1000810008150082500825008250082500825008		20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07
152 20E0760E0727E0840E0815E0815E0815E0815E0825E0822E0824E0820E0822E0882E0882E0882E0832E0880E0710E08 153 10E0810E0815E0825E0825E0824E0820E0820E0820E0812E0880E0710E08 154 40E0730E0845E0818E0818E0818E0818E0825E0815E0815E0815E0815E0815E0815E0815 155 54E0654E0661E06710E0710E0710E0710E0710E0781E0654E066 156 20E0820E0827E0845E0845E0820E0820E0820E0820E0830E0818E0812E0840E07 159 30E0730E0740E0770E0770E0770E0770E0770E07		
153 10E0810E0815E0825E0825E0824E0820E0820E0820E0812E0880E0710E08 154 40E0730E0845E0818E0818E0818E0818E0818E0818E0825E0815E0810E0840E07 155 54E0654E0681E0610E0710E0710E0710E0710E0710E0781E0654E0654E06 156 20E0827E0845E0845E0845E0840E0840E0840E0840E0840		
154 40E0780E0730E0845E0818E0818E0818E0818E0818E0825E0815E0810E0840E07 155 54E0654E0681E0610E0710E0710E0710E0710E0710E0781E0654E065 156 20E0820E0827E0845E0845E0840E0840E0840E0840E08340E0824E08318E0812E0840E07 157 30E0730E0740E0770E0770E0770E0770E0770E07		
15554£0654£0681£0610£0710£0710£0710£0710£0710£0781£0654£0654£0615620£0820£0827£0845£0845£0840£0840£0840£0840£0840£0824£0816£0818£0815740£0780£0733£0845£0820£0820£0820£0820£0830£0818£0812£0840£0715930£0730£0770£0770£0770£0770£0770£0770£0		
15620E0820E0827E0845E0845E0840E0840E0840E0840E0840E0824E0816E0812E0840E0715740E0780E0733E0845E0820E0820E0820E0820E0830E0818E0812E0840E0715930E0730E0740E0770E0770E0770E0770E0770E07		
15740E0780E0733E0845E0820E0820E0820E0820E0830E0818E0812E0840E0715930E0730E0740E0770E0770E0770E0770E0770E07		
15930E0730E0740E0770E0770E0770E0770E0770E07		
16018E0818E0839E0885E0885E0810E0910E0910E0985E0839E0824E0818E0816130E0630E0645E0675E0675E0675E0675E0675E0675E0645E0630E0630E0616216E0920E0927E1045E1045E1030E0830E0831E0818E0818E0810890E0760E0780E0716380E0780E0712E0820E0820E0820E0818E0919E0990E0890E0858E0834E0816554E0654E0681E0610E0710E0710E0710E0710E0710E0710E0781E0654E0654E0616644E0842E0860E0810E0910E0995E0890E0890E0890E0854E0836E0840E0816734E0846E0888E0820E0996E0896E0810E0910E0918E0990E08560836E0816920E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E0717020E0820E0839E0880E0895E0895E0895E0835E0835E0832E0832E09917318E0818E0824E0840E0845E0835E0835E0835E0835E0835E0832E0824E0824E0817430E0832E0848E0885E0885E0892E0892E0892E0892E0892E0892E0832E0832E0832E0817510E0910E0998E0819E0918E0918E0921E0921E0921E0921E0982E0832E0832E0817610E0910E0998E0819E0918E0918E0921E0921E0921E0922E0832E0832E0832E0817730E0832E0848E0885E0885E0885E0885E0885E0885E0885	157	40E0780E0733E0845E0820E0820E0820E0820E0830E0818E0812E0840E07
16130E0630E0645E0675E0675E0675E0675E0675E0675E0645E0630E0630E0616216E0920E0927E1045E1045E1030E0830E0830E0815E1027E1018E1016E0916380E0780E0712E0820E0820E0820E0818E0818E0818E0890E0760E0780E0716432E0844E0886E0819E0992E0818E0919E0990E0890E0890E0854E0834E0816554E0654E0681E0610E0710E0710E0710E0710E0710E0710E0781E0654E0654E0654E06616644E0842E0860E0810E0910E0995E0890E0890E0890E0854E0836E0840E0816734E0846E0888E0820E0996E0896E0810E0910E0918E0990E0860E0836E0816920E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E07717020E0820E0839E0880E0880E0895E0895E0895E0880E0839E0826E0820E0817223E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E0917318E0818E0824E0840E0840E0835E0835E0835E0835E0821E0814E0816E0817430E0832E0848E0885E0885E0892E0892E0892E0885E0851E0832E0832E0832E0817610E0910E0998E0819E0918E0918E0921E0921E0921E0921E0982E0832E0817800.0000.0000.0000.0000.0000.0000.0000	159	30E0730E0740E0770E0770E0770E0770E0770E07
16216E0920E0927E1045E1045E1030E0830E0830E0815E1027E1018E1016E0916380E0780E0712E0820E0820E0820E0818E0818E0818E0890E0760E0780E0716432E0844E0886E0819E0992E0818E0919E0990E0890E0890E0858E0834E0816554E0654E0681E0610E0710E0710E0710E0710E0710E0781E0654E0654E0616644E0842E0860E0810E0910E0995E0890E0890E0890E0854E0836E0840E0816734E0846E0888E0820E0996E0896E0810E0910E0918E0990E08060E0836E0816920E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E0717020E0820E0839E0880E0895E0895E0895E0895E0835E0839E0826E0820E0917223E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E0917318E0818E0824E0840E0840E0835E0835E0835E0835E0835E0821E0814E0816E0817430E0832E0848E0885E0885E0892E0892E0892E0885E0851E0832E0832E0817610E0910E0998E019E0918E0918E0921E0921E0921E0921E0932E0834E0896E0817730E0832E0848E0885E0885E0885E0885E0885E0851E0832E0832E0817800.0000.0000.0000.0000.0000.0000.0000	160	18E0818E0839E0885E0885E0810E0910E0910E0985E0839E0824E0818E08
16216E0920E0927E1045E1045E1030E0830E0830E0815E1027E1018E1016E0916380E0780E0712E0820E0820E0820E0818E0818E0818E0890E0760E0780E0716432E0844E0886E0819E0992E0818E0919E0990E0890E0890E0858E0834E0816554E0654E0681E0610E0710E0710E0710E0710E0710E0781E0654E0654E0616644E0842E0860E0810E0910E0995E0890E0890E0890E0854E0836E0840E0816734E0846E0888E0820E0996E0896E0810E0910E0918E0990E08060E0836E0816920E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E0717020E0820E0839E0880E0895E0895E0895E0895E0835E0839E0826E0820E0917223E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E0917318E0818E0824E0840E0840E0835E0835E0835E0835E0835E0821E0814E0816E0817430E0832E0848E0885E0885E0892E0892E0892E0885E0851E0832E0832E0817610E0910E0998E019E0918E0918E0921E0921E0921E0921E0932E0834E0896E0817730E0832E0848E0885E0885E0885E0885E0885E0851E0832E0832E0817800.0000.0000.0000.0000.0000.0000.0000	161	30E0630E0645E0675E0675E0675E0675E0675E0675E0645E0630E0630E06
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
$ \begin{array}{l} 164 & 32E0844E0886E0819E0992E0818E0919E0919E0990E0890E0858E0834E08 \\ 165 & 54E0654E0681E0610E0710E0710E0710E0710E0710E0781E0654E0654E06 \\ 166 & 44E0842E0860E0810E0910E0995E0890E0890E0854E0836E0840E08 \\ 167 & 34E0846E0888E0820E0996E0896E0810E0910E0918E0990E0860E0836E08 \\ 169 & 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 \\ 20E0820E0839E0880E0880E0895E0895E0895E0880E0839E0826E0820E08 \\ 172 & 23E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E09 \\ 173 & 18E0818E0824E0840E0835E0835E0835E0835E0835E0821E0814E0816E08 \\ 174 & 30E0832E0848E0885E0885E0892E0892E0892E0892E0885E0851E0832E0832E08 \\ 176 & 10E0910E0998E0819E0918E0918E0921E0921E0921E0922E0884E0896E08 \\ 177 & 30E0832E0848E0885E0885E0885E0885E0885E0885E0851E0832E0832E08 \\ 178 & 00.0000.0000.0000.0000.0000.0000.000$		
16554E0654E0681E0610E0710E0710E0710E0710E0710E0781E0654E0654E0616644E0842E0860E0810E0910E0995E0890E0890E0890E0854E0836E0840E0816734E0846E0888E0820E0996E0896E0810E0910E0918E0990E0860E0836E0816920E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E0717020E0820E0839E0880E0880E0895E0895E0895E0895E0880E0839E0826E0820E0817223E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E0917318E0818E0824E0840E0835E0835E0835E0835E0835E0821E0814E0816E0817430E0832E0848E0885E0885E0892E0892E0892E085E0851E0832E0832E0817510E0910E0998E0819E0918E0918E0921E0921E0921E0921E0982E0832E0832E0817730E0832E0848E0885E0885E0885E0885E0885E0885E0851E0832E0832E0817800.0000.0000.0000.0000.0000.0000.0000		
$ \begin{array}{l} 166 & 44E0842E0860E0810E0910E0995E0890E0890E0890E0854E0836E0840E08 \\ 167 & 34E0846E0888E0820E0996E0896E0810E0910E0918E0990E0860E0836E08 \\ 169 & 20E0720E0730E0750E0750E0750E0750E0750E0730E0720E0720E07 \\ 170 & 20E0820E0839E0880E0880E0895E0895E0895E0895E0839E0826E0820E08 \\ 172 & 23E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E09 \\ 173 & 18E0818E0824E0840E08340E0835E0835E0835E0835E0835E0832E0832E0832E08 \\ 174 & 30E0832E0848E0885E0885E0892E0892E0892E0892E0885E0851E0832E0832E08 \\ 176 & 10E0910E0998E0819E0918E0921E0921E0921E0982E0884E0896E08 \\ 177 & 30E0832E0848E0885E0885E0885E0885E0885E0885E0851E0832E0832E08 \\ 178 & 00.0000.0000.0000.0000.0000.0000.000$		
$ \begin{array}{rrrr} 34E0846E0888E0820E0996E0896E0810E0910E0918E0990E0860E0836E08\\ 169 20E0720E0730E0750E0750E0750E0750E0750E0730E0720E0720E07\\ 170 20E0820E0839E0880E0880E0895E0895E0895E0880E0839E0826E0820E08\\ 172 23E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E09\\ 173 18E0818E0824E0840E0840E0835E0835E0835E0835E0835E0832E0832E0832E088\\ 174 30E0832E0848E0885E0885E0892E0892E0892E0885E0835E0832E0832E0832E088\\ 176 10E0910E0998E0819E0918E0918E0921E0921E0921E0982E0884E0896E08\\ 177 30E0832E0848E0885E0885E0885E0885E0885E0885E0885$		
16920E0720E0730E0750E0750E0750E0750E0750E0730E0720E0720E0717020E0820E0839E0880E0895E0895E0895E0880E0839E0826E0820E0817223E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E0917318E0818E0824E0840E0840E0835E0835E0835E0835E0821E0814E0816E0817430E0832E0848E085E0885E0892E0892E0892E0885E0851E0832E0832E0817610E0910E0998E0819E0918E0918E0921E0921E0921E0982E0885E0832E0832E0817730E0832E0848E0885E0885E0885E0885E0885E0851E0832E0832E0817800.0000.0000.0000.0000.0000.0000.0000		
17020E0820E0839E0880E089E0895E0895E0895E0880E0839E0826E0820E0817223E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E0917318E0818E0824E0840E0840E0835E0835E0835E0835E0821E0814E0816E0817430E0832E0848E0885E0885E0892E0892E0892E0892E0885E0851E0832E0832E0817610E0910E0998E0819E0918E0918E0921E0921E0921E0982E0884E0896E0817730E0832E0848E0885E0885E0885E0885E0851E0832E0832E0817600.0000.0000.0000.0000.0000.0000.0000		
17223E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E0917318E0818E0824E0840E0840E0835E0835E0835E0835E0821E0814E0816E0817430E0832E0848E0885E0885E0892E0892E0892E0892E0885E0851E0832E0832E0817610E0910E0998E0819E0918E0918E0921E0921E0921E0982E0884E0896E0817730E0832E0848E0885E0885E0885E0885E0885E0885E0851E0832E0832E0817800.0000.0000.0000.0000.0000.0000.0000	169	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	170	20E0820E0839E0880E0880E0895E0895E0895E0880E0839E0826E0820E08
17430E0832E0848E0885E0885E0892E0892E0892E0885E0851E0832E0832E0817610E0910E0998E0819E0918E0918E0921E0921E0921E0982E0884E0896E0817730E0832E0848E0885E0885E0885E0885E0885E0885E0851E0832E0832E0817800.0000.0000.0000.0000.0000.0000.0000	172	23E0918E0927E1045E1045E1046E0746E0746E0712E1027E1018E1023E09
17430E0832E0848E0885E0885E0892E0892E0892E0885E0851E0832E0832E0817610E0910E0998E0819E0918E0918E0921E0921E0921E0982E0884E0896E0817730E0832E0848E0885E0885E0885E0885E0885E0885E0851E0832E0832E0817800.0000.0000.0000.0000.0000.0000.0000	173	18E0818E0824E0840E0840E0835E0835E0835E0835E0821E0814E0816E08
17610E0910E0998E0819E0918E0918E0921E0921E0921E0982E0884E0896E0817730E0832E0848E0885E0885E0885E0885E0885E0885E0885		
17730E0832E0848E0885E0885E0885E0885E0885E0885E0885		10E0910E0998E0819E0918E0918E0921E0921E0921E0982E0884E0896E08
17800.0000.0000.0000.0000.0000.0000.0000		
17930E0730E0740E0770E0770E0770E0770E0770E07		
18048E0848E0872E0812E0912E0912E0912E0912E0972E0848E0848E0818180E0780E0712E0824E0824E0824E0824E0824E0824E0812E0880E0780E0718273E0773E0711E0818E0818E0818E0818E0818E0818E0818		
18180E0780E0712E0824E0824E0824E0824E0824E0824E0824E0812E0880E0780E0718273E0773E0711E0818E0818E0818E0818E0818E0818E0811E0873E0773E0718324E0824E0832E0848E0848E0848E0848E0848E0848E0832E0824E0824E0818416E0816E0824E0840E0840E0840E0840E0840E0840E0824E0816E0816E0818620E0920E0928E0936E0936E0936E0944E0944E0926E0917E0918E0918800.0000.0000.0000.0000.0000.0000.0000		
18273E0773E0711E0818E0818E0818E0818E0818E0818E0818		
18324E0824E0832E0848E0848E0848E0848E0848E0848E0848E0832E0824E0824E0818416E0816E0824E0840E0840E0840E0840E0840E0840E0824E0816E0816E0818620E0920E0928E0936E0936E0936E0944E0944E0944E0926E0917E0918E0918800.0000.0000.0000.0000.0000.0000.0000		
18416E0816E0824E0840E0840E0840E0840E0840E0840E0824E0816E0816E0818620E0920E0928E0936E0936E0936E0944E0944E0944E0926E0917E0918E0918800.0000.0000.0000.0000.0000.0000.0000		73E0773E0711E0818E0818E0818E0818E0818E0818E0818
18416E0816E0824E0840E0840E0840E0840E0840E0840E0824E0816E0816E0818620E0920E0928E0936E0936E0936E0944E0944E0944E0926E0917E0918E0918800.0000.0000.0000.0000.0000.0000.0000	183	24E0824E0832E0848E0848E0848E0848E0848E0848E0848E0832E0824E0824E08
18620E0920E0928E0936E0936E0936E0944E0944E0944E0926E0917E0918E0918800.0000.0000.0000.0000.0000.0000.0000		
18800.0000.0000.0000.0000.0000.0000.0000		
18965E0765E0765E0716E0816E0816E0816E0816E0816E0865E0765E0719048E0848E0872E0812E0912E0912E0912E0912E0912E0972E0848E0848E08		
190 48E0848E0872E0812E0912E0912E0912E0912E0912E0972E0848E0848E08		
121 IIF0/IIF0/I0F0/S0F0/S0F0/S0F0/S0F0/S0F0/		
	エフエ	TTE0, TTE0, TOE0, SOE0, SOE0, SOE0, SOE0, SOE0, SOE0, TOE0, TTE0, TTE0, TTE0, TTE0, SOE0,

192	80E0732E0816E0924E0980E0880E0880E0880E0812E0972E0848E0880E07
193	12E0812E0816E0824E0824E0824E0824E0824E0824E0824E0812E0880E0712E08
194	16E0840E0818E0926E0910E0910E0910E0910E0916E0984E0864E0816E08
195	40E0640E0660E0610E0710E0710E0710E0710E0710E0760E0640E0640E06
196	33E0932E0948E0978E0976E0976E0986E0986E0986E0942E0928E0931E09
199	12E0812E0816E0828E0828E0828E0828E0828E0828E0828E0816E0812E0812E08
200	72E0872E0810E0918E0918E0918E0918E0918E0918E0918
201	38E0738E0738E0776E0776E0776E0776E0776E0776E0738E0738E0738E07
203	24E0824E0836E0860E0848E0848E0848E0848E0848E0848E0836E0824E0824E08
	24E0824E0832E0848E0848E0848E0848E0848E0848E0848E0832E0824E0824E08
204	
206	88E0888E0813E0922E0922E0920E0920E0920E0920E0912E0980E0888E08
209	80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07
210	72E0872E0810E0918E0918E0918E0918E0918E0918E0918
211	35E0735E0735E0788E0788E0788E0788E0788E0788E0788E078
212	43E0743E0786E0712E0812E0812E0812E0812E0812E0886E0743E0743E07
213	12E0812E0816E0824E0824E0824E0824E0824E0824E0824E0816E0812E0812E08
214	16E0816E0824E0848E0848E0848E0848E0848E0848E0824E0816E0816E08
216	64E0864E0896E0814E0914E0914E0914E0914E0914E0914E0984E0856E0856E08
218	16E0216E0224E0240E0240E0240E0240E0240E0240E0224E0216E0216E02
219	80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
220	88E0888E0816E0934E0934E0942E0942E0942E0934E0916E0911E0988E08
221	88E0688E0613E0722E0722E0722E0722E0722E0722E0713E0788E0688E06
222	56E1064E1091E1115E1215E1212E0812E0812E0844E1191E1191E1156E10
223	80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
224	96E0896E0815E0928E0928E0941E0941E0941E0930E0918E0911E0911E09
226	88E0888E0813E0922E0922E0922E0922E0922E0922E0913E0988E0888E08
227	88E0888E0814E0924E0926E0926E0926E0926E0928E0916E0910E0910E09
228	16E0216E0224E0240E0240E0240E0240E0240E0240E0224E0216E0216E02
229	68E0768E0713E0817E0817E0817E0817E0817E0817E0813E0868E0768E07
230	64E0864E0812E0924E0924E0928E0928E0928E0924E0912E0980E0864E08
231	96E0696E0614E0724E0724E0724E0724E0724E0724E0724E0714E0796E0696E06
232	32E1040E1035E1188E1188E1172E0872E0872E0826E1135E1135E1132E10
233	70E0769E0713E0816E0816E0816E0816E0816E0816E0816E0893E0796E0767E07
234	88E0888E0813E0924E0924E0942E0944E0944E0926E0915E0996E0896E08
236	40E0840E0860E0810E0910E0910E0910E0910E0910E0960E0840E0840E08
237	80E0880E0812E0922E0922E0922E0924E0924E0924E0914E0988E0888E08
238	72E0172E0110E0221E0221E0221E0221E0221E02
239	16E0816E0824E0832E0832E0832E0832E0832E0832E0832E0824E0816E0816E08
240	22E0822E0845E0810E0910E0910E0910E0910E0910E0945E0830E0822E08
241	30E0630E0645E0675E0675E0675E0675E0675E0675E0675E0645E0630E0630E06
242	24E1028E1040E1170E1170E1128E0728E0728E0720E1140E1130E1124E10
243	60E0760E0780E0712E0812E0812E0812E0812E0812E0812E0880E0760E0760E07
244	24E0824E0839E0870E0870E0810E0910E0910E0975E0845E0830E0828E08
246	22E0822E0830E0850E0850E0850E0850E0850E0850E0830E0820E0820E08
248	40E0140E0180E0112E0212E0212E0212E0212E0212E0280E0140E0140E01
	18E0718E0727E0746E0746E0746E0746E0746E0746E0746E0727E0718E0718E07
249	
250	14E0814E0827E0855E0855E0860E0860E0860E0855E0827E0818E0814E08
251	16E0716E0716E0741E0741E0741E0741E0741E0741E0741E0716E0716E0716E07
252	70E0816E0924E1040E1040E1060E0760E0760E0712E1024E1016E1070E08
253	40E0740E0760E0780E0780E0780E0780E0780E0780E078
254	20E0820E0830E0855E0855E0885E0885E0885E0855E0833E0822E0822E08
256	14E0814E0818E0830E0830E0830E0830E0830E0830E0830
258	00.0000.0000.0000.0000.0000.0000.0000.0000
259	30E0730E0740E0770E0770E0770E0770E0770E07
260	14E0816E0824E0845E0845E0850E0850E0850E0845E0824E0816E0814E08
261	20E0620E0630E0650E0650E0650E0650E0650E0650E0630E0620E0620E06
262	40E0740E0760E0710E0810E0810E0810E0810E0810E0810E0860E0740E0740E07
263	60E0760E0780E0712E0812E0812E0810E0810E0810E0860E0740E0760E07
264	12E0812E0818E0830E0830E0830E0830E0830E0830E0830
265	10E0810E0815E0825E0825E0825E0825E0825E0825E0815E0810E0810E08
266	60E0858E0884E0810E0910E0910E0996E0896E0896E0869E0848E0854E08
267	12E0812E0818E0830E0830E0830E0830E0830E0830E0830
268	12E0212E0218E0230E0230E0230E0230E0230E0230E0230E0218E0212E0212E02
269	20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07
270	90E0720E0722E0842E0842E0834E0834E0834E0834E0842E0822E0811E0890E07
272	48E0857E0810E1015E1015E1060E0760E0760E0740E0910E1050E0948E08
273	30E0730E0730E0760E0760E0760E0760E0760E07
274	12E0814E0818E0834E0842E0860E0860E0860E0832E0816E0815E0812E08
275	10E0610E0620E0630E0630E0630E0630E0630E0630E063
276	78E0876E0872E0821E0920E0919E0918E0918E0912E0962E0870E08
277	13E0814E0836E0836E0830E0830E0830E0830E0830E0848E0832E0815E0813E08

279	20E0720E0740E0740E0740E0740E0740E0740E07
280	24E0826E0842E0880E0880E0890E0890E0890E0880E0842E0828E0824E08
282	12E0716E0810E0911E0935E0840E0835E0835E0875E0842E0830E0812E07
283	40E0740E0760E0710E0880E0780E0780E0780E0780E0740E0740E074
284	16E0834E0886E0818E0980E0880E0880E0880E0892E0869E0844E0816E08
285	22E0622E0633E0655E0655E0655E0655E0655E0655E0633E0622E0622E06
286	78E0876E0810E0921E0920E0919E0918E0918E0918E0990E0862E0870E08
287	16E0832E0884E0821E0975E0880E0875E0875E0892E0866E0844E0816E08
288	00.0000.0000.0000.0000.0000.0000.0000.0000
289	40E0740E0760E0780E0780E0780E0780E0780E0780E0760E076
290	16E0818E0833E0865E0865E0875E0875E0875E0865E0833E0820E0816E08
291	24E0624E0636E0660E0660E0660E0660E0660E0660E0636E0624E0624E06
292	22E0917E0924E1040E1040E1012E0810E0810E0812E1024E1016E1022E09
293	40E0740E0760E0780E0780E0780E0770E0770E0770E0740E0730E0740E07
294	18E0822E0845E0870E0855E0875E0875E0875E0865E0839E0824E0820E08
295	16E0616E0624E0640E0640E0640E0640E0640E0640E0624E0616E0616E06
296	26E0826E0836E0860E0860E0860E0860E0860E0860E0833E0824E0824E08
297	20E0824E0845E0870E0860E0860E0860E0860E0865E0839E0824E0820E08
298	10E0210E0215E0225E0225E0225E0225E0225E02
299	30E0730E0740E0770E0770E0770E0770E0770E07
300	16E0816E0830E0855E0855E0865E0865E0865E0855E0830E0820E0816E08
301	14E0614E0621E0635E0635E0635E0635E0635E0635E0635E0621E0614E0614E06
302	12E0974E0821E1035E1035E1080E0780E0780E0710E1021E1014E1012E09
303	20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07
304	14E0814E0821E0840E0840E0865E0865E0865E0840E0824E0816E0816E08
306	12E0812E0818E0830E0830E0830E0830E0830E0830E0830
307	12E0812E0818E0835E0835E0835E0835E0835E0835E0835E0821E0814E0812E08
308	00.0000.0000.0000.0000.0000.0000.0000.0000
309	30E0730E0740E0760E0760E0760E0760E0760E0760E076
310	20E0820E0830E0850E0850E0850E0850E0850E0850E0830E0820E0820E08
312	60E0760E0790E0712E0812E0812E0812E0812E0812E0890E0760E0760E07
313	60E0760E0780E0712E0812E0812E0810E0810E0810E0860E0740E0740E07
314	60E0760E0790E0715E0815E0815E0815E0815E0815E0890E0760E0760E07
316	11E0911E0921E0931E0930E0920E0918E0918E0918E0990E0894E0810E09
319	60E0760E0790E0718E0818E0818E0818E0818E0818E0818E0890E0760E0760E07
320	20E0820E0842E0890E0890E0892E0892E0892E0890E0842E0828E0820E08
321	60E0560E0590E0512E0612E0612E0612E0612E0612E0690E0560E0560E05
322	10E0912E0918E1030E1030E1015E0815E0815E0810E1018E1012E1010E09
323	40E0740E0760E0780E0780E0780E0770E0770E0770E0740E0730E0740E07
324	30E0834E0863E0810E0990E0818E0919E0919E0910E0960E0840E0834E08
325	22E0622E0633E0655E0655E0655E0655E0655E0655E0633E0622E0622E06
326	16E0816E0824E0835E0835E0835E0835E0835E0835E0835E0821E0814E0814E08
328	00.0000.0000.0000.0000.0000.0000.0000.0000
329	40E0740E0760E0710E0810E0810E0810E0810E0810E0810E0860E0740E0740E07
330	36E0838E0872E0890E0890E0821E0921E0921E0990E0872E0846E0836E08
332	94E0811E0915E1025E1025E1030E0830E0830E0880E0915E1010E1094E08
333	80E0780E0712E0820E0820E0820E0818E0818E0818E0890E0760E0780E07
334	30E0842E0811E0920E0911E0918E0918E0918E0910E0981E0850E0832E08
335	28E0628E0642E0670E0670E0670E0670E0670E0670E0642E0628E0628E06
336	60E0960E0910E1018E1016E1016E1016E1016E1016E1080E0960E0980E09
337	28E0840E0810E0919E0910E0910E0910E0910E0910E0975E0848E0830E08
338	00.0000.0000.0000.0000.0000.0000.0000.0000
339	18E0718E0727E0745E0745E0745E0745E0745E0745E0727E0718E0718E07
340	24E0824E0851E0892E0892E0811E0911E0911E0992E0851E0834E0824E08
341	24E0624E0636E0660E0660E0660E0660E0660E0660E0636E0624E0624E06
342	12E0973E0821E1035E1035E1070E0770E0770E0710E1021E1014E1012E09
343	60E0760E0780E0712E0812E0812E0812E0812E0812E0860E0740E0760E07
344	38E0842E0863E0811E0992E0818E0919E0919E0996E0872E0844E0842E08
346	24E0822E0833E0855E0850E0850E0850E0850E0850E0827E0820E0822E08
347	38E0840E0863E0810E0911E0911E0992E0892E0892E0892E0869E0842E0840E08
349	40E0740E0760E0712E0812E0812E0812E0812E0812E0860E0740E0740E07
350	24E0826E0854E0892E0892E0810E0910E0910E0992E0854E0834E0824E08
351	10E0710E0720E0731E0731E0731E0731E0731E0731E0731E0720E0710E0710E07
352	13E0923E0921E1035E1035E1020E0820E0820E0812E1021E1014E1013E09
353	30E0730E0740E0760E0760E0760E0760E0760E0760E076
354	36E0844E0896E0818E0996E0821E0918E0918E0910E0981E0850E0840E08
355	00.0000.0000.0000.0000.0000.0000.0000.0000
	30E0830E0842E0870E0870E0865E0865E0865E0865E0836E0826E0828E08
356	
357	36E0844E0896E0818E0996E0896E0896E0896E0810E0981E0852E0840E08
359	40E0740E0760E0780E0780E0780E0780E0780E0780E078
360	20E0822E0833E0865E0865E0870E0870E0870E0865E0833E0822E0820E08

362	19E0710E0857E0880E0825E0825E0825E0825E0845E0824E0818E0819E07
363	30E0730E0740E0770E0770E0760E0760E0760E0760E0740E0720E0730E07
364	14E0824E0881E0892E0860E0860E0860E0860E0880E0848E0828E0814E08
365	18E0618E0627E0645E0645E0645E0645E0645E0645E0645E0627E0618E0618E06
366	32E0830E0845E0870E0870E0870E0865E0865E0865E0839E0826E0828E08
367	12E0822E0875E0811E0955E0855E0850E0850E0870E0842E0826E0812E08
368	16E0216E0224E0240E0240E0240E0240E0240E0240E024
369	40E0740E0760E0710E0810E0810E0810E0810E0810E0810E0860E0740E0740E07
370	32E0834E0878E0821E0921E0918E0918E0918E0921E0978E0852E0832E08
371	12E0712E0718E0730E0730E0730E0730E0730E0730E0730E0718E0712E0712E07
372	12E0922E0921E1035E1035E1015E0815E0815E0812E1021E1014E1012E09
373	30E0730E0740E0770E0760E0760E0760E0760E0760E0740E0720E0730E07
374	70E0878E0894E0818E0921E0927E0927E0927E0918E0992E0888E0876E08
375	12E0612E0618E0630E0630E0630E0630E0630E0630E0618E0612E0612E06
	10E0810E0815E0825E0825E0825E0825E0825E0825E0810E0810E0810E08
376	
377	74E0882E0898E0819E0922E0922E0922E0922E0918E0996E0890E0880E08
378	10E0210E0215E0225E0225E0225E0225E0225E02
379	60E0760E0780E0712E0812E0812E0812E0812E0812E0812E0880E0760E0760E07
380	54E0856E0886E0829E0929E0936E0936E0936E0929E0986E0884E0854E08
382	11E0969E0821E1035E1035E1042E0742E0742E0710E1021E1014E1011E09
383	40E0740E0760E0710E0810E0810E0810E0810E0810E0860E0740E0740E07
384	10E0910E0922E0929E0931E0960E0960E0960E0932E0919E0912E0911E09
386	10E0880E0712E0820E0820E0820E0820E0820E0820E0820E08
389	40E0740E0760E0710E0810E0810E0810E0810E0810E0810E0860E0740E0740E07
END M	ION-SQOLIM
MON-T	FLW-CONC
	S > Conc of QUAL in interflow outflow for each month (qty/ft3)
*** x-	X JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
10	65E0365E0314E0425E0425E0446E0446E0446E0425E0414E0493E0365E03
11	23E0223E0223E0246E0246E0246E0246E0246E0246E0223E0223E0223E02
12	16E0439E0484E0484E0484E0423E0323E0323E0384E0484E0484E0416E04
13	14E0314E0318E0328E0328E0328E0323E0323E0323E0314E0393E0214E03
14	12E0413E0422E0443E0420E0449E0449E0449E0449E0449E0421E0413E0413E04
15	21E0421E0421E0442E0442E0442E0442E0442E04
16	14E0414E0420E0426E0425E0425E0423E0423E0423E0416E0411E0413E04
17	12E0413E0421E0443E0426E0426E0426E0426E0420E0421E0413E0412E04
18	00.0300.0300.0500.0800.0800.0800.0800.08
19	38E0238E0238E0296E0296E0296E0296E0296E0296E0238E0238E0238E02
20	37E0342E0370E0314E0414E0415E0415E0415E0414E0470E0342E0337E03
22	70E0270E0293E0214E0314E0314E0314E0314E0314E0314E0393E0270E0270E02
23	14E0314E0321E0335E0335E0335E0335E0335E0335E0335E0321E0314E0314E03
24	42E0351E0370E0311E0411E0411E0411E0411E0411E0411E0470E0337E0342E03
26	13E0413E0416E0423E0423E0422E0424E0424E0424E0414E0410E0411E04
27	42E0351E0377E0312E0412E0412E0412E0412E0412E0412E0477E0342E0342E03
28	00.0100.0100.0100.0200.0200.0200.0200.0
29	38E0238E0238E0295E0295E0295E0295E0295E0295E0238E0238E0238E02
30	16E0318E0331E0364E0364E0370E0370E0370E0364E0331E0318E0316E03
31	45E0145E0175E0112E0212E0212E0212E0212E0212E0212E0275E0145E0145E01
32	20E0246E0224E0335E0314E0314E0314E0314E0321E0310E0370E0220E02
33	70E0270E0210E0314E0314E0314E0314E0314E0314E0314E03
34	16E0323E0349E0375E0352E0352E0352E0352E0364E0338E0321E0316E03
35	13E0213E0226E0233E0233E0233E0233E0233E0233E023
36	49E0346E0366E0311E0410E0410E0499E0399E0399E0356E0339E0344E03
37	16E0323E0352E0375E0352E0352E0352E0352E0364E0338E0321E0316E03
38	00.0000.0000.0100.0100.0100.0100.0100.0100.0100.0100.0000.00
39	23E0223E0235E0258E0258E0258E0258E0258E0258E0258E0235E0223E0223E02
40	72E0377E0311E0431E0431E0448E0448E0448E0431E0411E0410E0472E03
42	70E0484E0484E0484E0484E0481E0281E0281E0284E0484E0484E0470E04
43	70E0270E0210E0317E0317E0317E0317E0317E0317E0317E03
44	12E0413E0422E0442E0445E0484E0484E0484E0484E0449E0439E0487E0315E04
46	42E0342E0351E0389E0389E0389E0381E0381E0381E0346E0335E0338E03
47	12E0413E0421E0450E0444E0446E0447E0447E0449E0419E0486E0315E04
48	00.0200.0200.0300.0500.0500.0500.0500.05
49	12E0212E0224E0237E0237E0237E0237E0237E0237E0237E0224E0212E0212E02
50	$18 \pm 0321 \pm 0335 \pm 0370 \pm 0370 \pm 0375 \pm 0375 \pm 0375 \pm 0370 \pm 0335 \pm 0321 \pm 0318 \pm 03$
52	35E0246E0217E0328E0311E0314E0311E0311E0317E0310E0370E0235E02
53	70E0270E0210E0314E0314E0314E0314E0314E0314E0314E03
54	18E0323E0345E0370E0358E0358E0352E0352E0358E0335E0321E0318E03
55	70.1170.1110E0117E0117E0117E0117E0117E01
56	28E0328E0337E0357E0357E0357E0357E0357E0357E0357
20	UUUEUEUEU

57	18E0323E0345E0370E0358E0358E0358E0358E0358E0338E0321E0318E03
58	00.0100.0100.0200.0400.0400.0400.0400.04
59	20E0220E0230E0250E0250E0250E0250E0250E02
60	49E0356E0384E0319E0419E0421E0421E0421E0419E0484E0356E0349E03
61	70E0270E0210E0317E0317E0317E0317E0317E0317E0310E0370E0270E02
62	59E0270E0228E0335E0321E0321E0321E0321E0324E0314E0310E0359E02
63	28E0328E0342E0370E0370E0370E0352E0352E0352E0331E0321E0328E03
64	35E0342E0373E0314E0414E0412E0412E0412E0414E0463E0342E0335E03
65	16E0216E0224E0232E0232E0232E0232E0232E0232E0232
66	32E0432E0430E0475E0471E0470E0466E0466E0466E0438E0426E0430E04
67	42E0349E0384E0317E0415E0415E0415E0415E0415E0484E0349E0342E03
68	00.0200.0200.0300.0400.0400.0400.0400.04
69	63E0263E0295E0215E0315E0315E0315E0315E0315E0395E0263E0263E02
70	28E0328E0345E0387E0387E0393E0393E0393E0387E0345E0330E0328E03
71	25E0225E0237E0244E0244E0244E0244E0244E0244E0244E0237E0225E0225E02
72	35E0235E0246E0270E0270E0270E0270E0270E0270E0246E0235E0235E02
73	46E0246E0270E0281E0281E0281E0281E0281E0281E0246E0235E0235E02
74	18E0318E0328E0346E0346E0346E0346E0346E0346E0346E0328E0316E0318E03
76	70E0366E0384E0312E0411E0411E0411E0411E0411E0470E0356E0363E03
77	18E0321E0331E0352E0352E0346E0346E0346E0352E0331E0318E0318E03
79	35E0235E0246E0281E0281E0281E0281E0281E0281E0281E0246E0235E0235E02
80	70E0377E0311E0419E0419E0419E0419E0419E0419E0419E04
83	14E0314E0321E0328E0324E0324E0324E0324E0324E0314E0310E0314E03
84	21E0321E0331E0352E0352E0352E0352E0352E0352E0331E0321E0321E03
86	65E0464E0460E0484E0484E0484E0484E0484E0484
87	35E0335E0352E0387E0387E0387E0387E0387E0387E0387E0352E0335E0335E03
89	21E0321E0331E0352E0352E0352E0352E0352E0352E0331E0321E0321E03
90	28E0328E0349E0381E0381E0381E0381E0381E0381E0381E0349E0328E0328E03
91	51E0151E0177E0112E0212E0212E0212E0212E0212E0277E0151E0151E01
92	24E0293E0242E0358E0318E0318E0318E0318E0335E0321E0314E0324E02
93	18E0318E0328E0346E0346E0346E0346E0346E0346E0346E0321E0318E0318E03
94	14E0318E0356E0381E0346E0346E0346E0346E0358E0335E0323E0314E03
95	18E0118E0128E0146E0146E0146E0146E0146E0146E0128E0118E0118E01
96	60E0360E0384E0314E0414E0412E0412E0412E0412E0470E0351E0356E03
97	14E0323E0363E0393E0358E0358E0358E0358E0370E0342E0323E0314E03
98	00.0600.0600.0800.1400.1400.1400.1400.1400.1400.0800.0600.06
99	70E0270E0293E0216E0316E0316E0316E0316E0316E0393E0270E0270E02
100	63E0363E0310E0419E0419E0419E0419E0419E0419E0419E04
102	21E0321E0331E0352E0352E0352E0352E0352E0352E0331E0321E0321E03
103	42E0342E0352E0387E0387E0387E0387E0387E0387E0387E0352E0335E0335E03
104	49E0356E0373E0312E0412E0412E0412E0412E0412E0412E0473E0349E0349E03
105	10E0210E0215E0226E0226E0226E0226E0226E0226E0215E0210E0210E02
106	32E0432E0477E0484E0484E0484E0484E0484E0484E0484
107	42E0349E0373E0312E0412E0410E0410E0410E0412E0473E0342E0342E03
108	00.2200.2200.3300.6500.6500.6500.6500.6500.6500.3300.2200.22
109	14E0314E0321E0328E0328E0328E0328E0328E0328E0321E0314E0314E03
110	63E0370E0311E0421E0421E0422E0422E0422E0421E0411E0470E0363E03
111	70E0270E0210E0317E0317E0317E0317E0317E0317E0317E03
112	70E0228E0315E0421E0470E0370E0370E0370E0312E0473E0349E0370E02
113	35E0335E0342E0384E0370E0370E0370E0370E0370E0342E0328E0328E03
114	70E0398E0326E0438E0422E0422E0422E0422E0422E0428E0416E0410E0470E03
115	34E0234E0234E0268E0268E0268E0268E0268E0268E0268E0234E0234E0234E02
116	11E0411E0416E0428E0428E0426E0426E0426E0426E0415E0410E0411E04
117	70E0310E0427E0432E0424E0424E0424E0424E0429E0417E0411E0470E03
118	00.0300.0300.0400.0700.0700.0700.0700.07
119	10E0310E0314E0324E0324E0324E0324E0324E0324E0324E0314E0310E0310E03
120	16E0316E0324E0340E0340E0340E0340E0340E0340E0340
121	51E0151E0177E0112E0212E0212E0212E0212E0212E0277E0151E0151E01
122	35E0246E0217E0323E0314E0314E0314E0314E0317E0310E0370E0235E02
123	70E0270E0210E0317E0317E0314E0314E0314E0314E0314E0393E0270E0270E02
124	93E0211E0324E0340E0329E0329E0329E0329E0329E0317E0311E0393E02
125	14E0114E0121E0135E0135E0135E0135E0135E0135E0121E0114E0114E01
126	42E0342E0359E0399E0393E0393E0387E0387E0387E0349E0335E0339E03
127	70E0293E0224E0335E0323E0323E0323E0323E0329E0317E0311E0370E02
128	00.0100.0100.0200.0400.0400.0400.0400.04
129	35E0235E0246E0270E0270E0270E0270E0270E0270E0270E0246E0235E0235E02
130	23E0323E0335E0358E0358E0358E0358E0358E0358E0335E0323E0323E03
131	00.0000.0000.0000.0000.0000.0000.0000.0000
134	
101	14E0314E0321E0335E0335E0335E0335E0335E0335E0321E0314E0314E03
136 137	$14E0314E0321E0335E0335E0335E0335E0335E0335E0321E0314E0314E03\\52E0352E0365E0311E0410E0410E0498E0398E0398E0356E0342E0349E03\\14E0314E0321E0335E0335E0335E0335E0335E0335E0335E0321E0314E0314E03$

139	35E0235E0246E0281E0281E0281E0281E0281E0281E0246E0235E0235E02
140	21E0321E0345E0399E0399E0312E0412E0412E0499E0345E0330E0321E03
142	23E0435E0484E0484E0484E0435E0329E0329E0384E0484E0484E0423E04
143	14E0311E0317E0329E0329E0329E0328E0328E0328E0314E0393E0211E03
144	35E0344E0310E0410E0411E0421E0422E0422E0411E0484E0356E0339E03
145	74E0174E0111E0222E0222E0222E0222E0222E0222E0211E0274E0174E01
146	11E0410E0410E0423E0422E0422E0424E0424E0424E0424E0411E0491E0310E04
147	35E0342E0310E0410E0411E0411E0411E0411E0411E0484E0353E0337E03
148	00.0200.0200.0200.0400.0400.0400.0400.0
149	23E0223E0235E0258E0258E0258E0258E0258E0258E0258E0235E0223E0223E02
150	11E0311E0317E0329E0329E0329E0329E0329E0329E0329E0317E0311E0311E03
152	23E0270E0231E0346E0317E0317E0317E0317E0329E0314E0311E0323E02
153	11E0311E0317E0329E0329E0328E0323E0323E0323E0314E0393E0211E03
154	46E0293E0235E0352E0321E0321E0321E0321E0329E0317E0311E0346E02
155	63E0163E0194E0112E0212E0212E0212E0212E0212E0294E0163E0163E01
156	23E0323E0331E0352E0352E0346E0346E0346E0346E0328E0318E0321E03
157	46E0293E0238E0352E0323E0323E0323E0323E0323E0335E0321E0314E0346E02
159	35E0235E0246E0281E0281E0281E0281E0281E0281E0281E0246E0235E0235E02
160	21E0321E0345E0399E0399E0311E0411E0411E0499E0345E0328E0321E03
161	35E0135E0152E0187E0187E0187E0187E0187E0187E0187E0152E0135E0135E01
162	18E0423E0484E0484E0484E0435E0335E0335E0384E0484E0484E0418E04
163	93E0293E0214E0323E0323E0323E0321E0321E0321E0310E0370E0293E02
164	37E0351E0310E0422E0410E0421E0422E0422E0410E0410E04
165	63E0163E0194E0112E0212E0212E0212E0212E0212E0294E0163E0163E01
166	51E0349E0370E0311E0411E0411E0410E0410E0410E0463E0342E0346E03
167	39E0353E0310E0423E0411E0411E0411E0411E0421E0410E0470E0342E03
169	23E0223E0235E0258E0258E0258E0258E0258E0258E0258E0235E0223E0223E02
170	23E0323E0345E0393E0393E0311E0411E0411E0493E0345E0330E0323E03
172	27E0421E0484E0484E0484E0453E0253E0253E0284E0484E0484E0427E04
173	21E0321E0328E0346E0346E0340E0340E0340E0340E0340E0324E0316E0318E03
174	35E0337E0356E0399E0399E0310E0410E0410E0499E0359E0337E0337E03
176	12E0412E0411E0422E0421E0421E0424E0424E04
177	35E0337E0356E0399E0399E0399E0399E0399E0399E0399E0359E0337E0337E03
178	00.0000.0000.0000.0000.0000.0000.0000.0000
179	35E0235E0246E0281E0281E0281E0281E0281E0281E0281E0246E0235E0235E02
180	56E0356E0384E0314E0414E0414E0414E0414E0414E0414E0484E0356E0356E03
181	93E0293E0214E0328E0328E0328E0328E0328E0328E0328E0314E0393E0293E02
182	85E0285E0212E0321E0321E0321E0321E0321E0321E0312E0385E0285E02
183	28E0328E0337E0356E0356E0356E0356E0356E0356E0337E0328E0328E03
184	18E0318E0328E0346E0346E0346E0346E0346E0346E0346E0328E0318E0318E03
186	23E0423E0433E0442E0442E0442E0451E0451E0451E0430E0420E0421E04
188	00.0000.0000.0000.0000.0000.0000.0000.0000
189	76E0276E0276E0219E0319E0319E0319E0319E0319E0376E0276E0276E02
190	56E0356E0384E0314E0414E0414E0414E0414E0414E0414E0484E0356E0356E03
191	13E0213E0219E0232E0232E0232E0232E0232E0232E0232E0219E0213E0213E02
192	93E0237E0319E0428E0493E0393E0393E0393E0314E0484E0356E0393E02
193	14E0314E0318E0328E0328E0328E0328E0328E0328E0328E0314E0393E0214E03
194	18E0346E0321E0430E0411E0411E0411E0411E0418E0498E0374E0318E03
195	46E0146E0170E0111E0211E0211E0211E0211E0211E0270E0146E0146E01
196	39E0438E0456E0484E0484E0484E0484E0484E0484E0484E0449E0433E0436E04
199	14E0314E0318E0332E0332E0332E0332E0332E0332E0332E0314E0314E0314E03
200	84E0384E0312E0421E0421E0421E0421E0421E0421E0412E0484E0384E03
201	44E0244E0244E0289E0289E0289E0289E0289E0289E0289E0244E0244E0244E02
203	28E0328E0342E0370E0356E0356E0356E0356E0356E0342E0328E0328E03
204	28E0328E0337E0356E0356E0356E0356E0356E0356E0356E0337E0328E0328E03
206	10E0410E0415E0425E0425E0423E0423E0423E0423E0423E0414E0493E0310E04
209	93E0293E0214E0323E0323E0323E0323E0323E0323E0314E0393E0293E02
210	84E0384E0312E0421E0421E0421E0421E0421E0421E0412E0484E0384E03
211	41E0241E0241E0210E0310E0310E0310E0310E0310E0341E0241E0241E02
212	50E0250E0210E0315E0315E0315E0315E0315E0315E0310E0350E0250E02
212	14E0314E0318E0328E0328E0328E0328E0328E0328E0328E0318E0318E0314E0314E0314E03
214	18E0318E0328E0356E0356E0356E0356E0356E0356E0328E0318E0318E03
216	74E0374E0311E0416E0416E0416E0416E0416E0416E0416E04
218	00.0200.0200.0300.0500.0500.0500.0500.05
219	93E0293E0214E0323E0323E0323E0323E0323E0323E0323E0314E0393E0293E02
220	10E0410E0419E0439E0439E0449E0449E0449E0439E0419E0413E0410E04
221	10E0210E0215E0225E0225E0225E0225E0225E02
222	84E0484E0484E0484E0484E0414E0314E0314E0384E0484E0484E0484E04
222	93E0293E0214E0323E0323E0323E0323E0323E0323E0323E0314E0304E0404E0404E0404E0404E0404E040
224	11E0411E0418E0432E0432E0448E0448E0448E0435E0421E0413E0413E04
226	10E0410E0415E0425E0425E0425E0425E0425E0425E0415E0410E0410E04

227	10E0410E0416E0428E0430E0430E0430E0430E0432E0419E0412E0412E04
228	00.0200.0200.0300.0500.0500.0500.0500.05
229	79E0279E0215E0319E0319E0319E0319E0319E0319E0319E0315E0379E0279E02
230	74E0374E0314E0428E0428E0432E0432E0432E0428E0414E0493E0374E03
231	11E0211E0216E0228E0228E0228E0228E0228E0228E0216E0211E0211E02
232	84E0484E0484E0484E0484E0484E0484E0384E03
233	82E0281E0215E0319E0319E0319E0318E0318E0318E0310E0311E0378E02
234	10E0410E0415E0428E0428E0449E0451E0451E0430E0418E0411E0411E04
236	46E0346E0370E0311E0411E0411E0411E0411E0411E0470E0346E0346E03
237	93E0393E0314E0425E0425E0425E0428E0428E0428E0416E0410E0410E04
238	00.0100.0100.0100.0300.0300.0300.0300.0
239	$18 \pm 0318 \pm 0328 \pm 0337 \pm 0337 \pm 0337 \pm 0337 \pm 0337 \pm 0337 \pm 0328 \pm 0318 \pm 03$
240	25E0325E0352E0311E0411E0411E0411E0411E0411E0452E0335E0325E03
241	35E0135E0152E0187E0187E0187E0187E0187E0187E0187E0152E0135E0135E01
242	84E0484E0484E0484E0484E0433E0233E0233E0284E0484E0484E0484E04
243	70E0270E0293E0214E0314E0314E0314E0314E0314E0314E0393E0270E0270E02
244	28E0328E0345E0381E0381E0312E0412E0412E0487E0352E0335E0332E03
246	25E0325E0335E0358E0358E0358E0358E0358E0358E035
248	00.0000.0000.0100.0100.0100.0100.0100.0100.0100.0100.0000.00
249	21E0221E0232E0253E0253E0253E0253E0253E0253E0253
250	16E0316E0331E0364E0364E0370E0370E0370E0364E0331E0321E0316E03
251	19E0219E0219E0247E0247E0247E0247E0247E0247E0247E0219E0219E0219E02
252	81E0318E0484E0484E0484E0470E0270E0270E0284E0484E0484E0481E03
253	46E0246E0270E0293E0293E0293E0293E0293E0293E0293E029
254	23E0323E0335E0364E0364E0399E0399E0399E0364E0338E0325E0325E03
256	16E0316E0321E0335E0335E0335E0335E0335E0335E0321E0314E0314E03
258	00.0000.0000.0000.0000.0000.0000.0000.0000
	35E0235E0246E0281E0281E0281E0281E0281E0281E0281E0246E0235E0235E02
259	
260	16E0318E0328E0352E0352E0358E0358E0358E0352E0328E0318E0316E03
261	23E0123E0135E0158E0158E0158E0158E0158E0158E0135E0123E0123E01
262	46E0246E0270E0211E0311E0311E0311E0311E0311E0310E0246E0246E02
263	70E0270E0293E0214E0314E0314E0311E0311E0311E0370E0246E0270E02
264	14E0314E0321E0335E0335E0335E0335E0335E0335E0321E0314E0314E03
265	11E0311E0317E0329E0329E0329E0329E0329E0329E0317E0311E0311E03
266	70E0367E0398E0312E0412E0411E0411E0411E0411E0480E0356E0363E03
267	14E0314E0321E0335E0335E0335E0335E0335E0335E0321E0314E0314E03
268	00.0100.0100.0200.0400.0400.0400.0400.04
269	23E0223E0235E0258E0258E0258E0258E0258E0258E0258E0235E0223E0223E02
270	10E0310E0325E0349E0349E0339E0339E0339E0349E0325E0312E0310E03
272	56E0366E0384E0484E0484E0470E0270E0270E0246E0484E0458E0456E03
273	35E0235E0235E0270E0270E0270E0270E0270E0270E0246E0223E0235E02
274	14E0316E0321E0339E0349E0370E0370E0370E0337E0318E0317E0314E03
275	11E0111E0123E0135E0135E0135E0135E0135E0135E0123E0111E0111E01
276	91E0388E0384E0324E0423E0423E0421E0421E0421E0414E0472E0381E03
277	$15 \pm 0316 \pm 0342 \pm 0342 \pm 0335 \pm 0335 \pm 0335 \pm 0335 \pm 0356 \pm 0337 \pm 0317 \pm 0315 \pm 03$
279	23E0223E0246E0246E0246E0246E0246E0246E0246E0246
280	28E0330E0349E0393E0393E0310E0410E0410E0493E0349E0332E0328E03
282	14E0218E0311E0413E0440E0346E0340E0340E0387E0349E0335E0314E02
283	46E0246E0270E0211E0393E0293E0293E0293E0293E0293E0246E0246E0246E02
284	18E0339E0310E0421E0493E0393E0393E0393E0310E0480E0351E0318E03
285	25E0125E0138E0164E0164E0164E0164E0164E0164E0164E0138E0125E0125E01
286	91E0388E0312E0424E0423E0423E0421E0421E0421E0410E0472E0381E03
287	18E0337E0398E0325E0487E0393E0387E0387E0310E0477E0351E0318E03
288	00.0000.0000.0000.0000.0000.0000.0000.0000
289	46E0246E0270E0293E0293E0293E0293E0293E0293E0293E0270E0246E0246E02
290	$18 \pm 0321 \pm 0338 \pm 0375 \pm 0375 \pm 0387 \pm 0387 \pm 0387 \pm 0375 \pm 0338 \pm 0323 \pm 0318 \pm 03$
291	28E0128E0142E0170E0170E0170E0170E0170E0170E0142E0128E0128E01
292	26E0420E0484E0484E0484E0414E0311E0311E0384E0484E0484E0426E04
293	46E0246E0270E0293E0293E0293E0281E0281E0281E0246E0235E0246E02
294	21E0325E0352E0381E0364E0387E0387E0387E0375E0345E0328E0323E03
295	$18\pm0118\pm0128\pm0146\pm0146\pm0146\pm0146\pm0146\pm0146\pm0128\pm0118\pm0118\pm01$
296	30E0330E0342E0370E0370E0370E0370E0370E0370E0338E0328E0328E03
297	23E0328E0352E0381E0370E0370E0370E0370E0375E0345E0328E0323E03
298	00.0100.0100.0200.0300.0300.0300.0300.03
299	35E0235E0246E0281E0281E0281E0281E0281E0281E0281E0246E0235E0235E02
300	18E0318E0335E0364E0364E0375E0375E0375E0364E0335E0323E0318E03
301	$16\pm0116\pm0124\pm0140\pm0140\pm0140\pm0140\pm0140\pm0140\pm0124\pm0116\pm0116\pm0116\pm0116\pm0116\pm0116\pm0116\pm011$
302	14E0486E0384E0484E0484E0493E0293E0293E0284E0484E0484E0414E04
303	23E0223E0235E0258E0258E0258E0258E0258E0258E0258E0235E0235E0223E0223E0223E0223E0223E0223
304	16E0316E0324E0346E0346E0375E0375E0375E0346E0328E0318E0318E03
306	14E0314E0321E0335E0335E0335E0335E0335E0335E0335E0321E0314E0314E03

307	14E0314E0321E0340E0340E0340E0340E0340E0340E0340E034
308	00.0000.0000.0000.0000.0000.0000.0000.0000
309	35E0235E0246E0270E0270E0270E0270E0270E0270E0246E0235E0235E02
310	23E0323E0335E0358E0358E0358E0358E0358E0358E035
312	70E0270E0210E0314E0314E0314E0314E0314E0314E0314E03
313	70E0270E0293E0214E0314E0314E0311E0311E0311E0310E0370E0246E0246E02
314	70E0270E0210E0317E0317E0317E0317E0317E0317E0310E0370E0270E02
316	13E0413E0425E0436E0435E0423E0421E0421E0421E0410E0410E0412E04
319	70E0270E0210E0321E0321E0321E0321E0321E0321E032
320	23E0323E0349E0310E0410E0410E0410E0410E0410E0410E0449E0332E0323E03
321	70.1170.1110E0114E0114E0114E0114E0114E0114E011
322	12E0414E0484E0484E0484E0417E0317E0317E0384E0484E0484E0412E04
323	46E0246E0270E0293E0293E0293E0281E0281E0281E0281E0246E0235E0246E02
324	35E0339E0373E0312E0410E0421E0422E0422E0411E0470E0346E0339E03
325	25E0125E0138E0164E0164E0164E0164E0164E0164E0138E0125E0125E01
326	18E0318E0328E0340E0340E0340E0340E0340E0340E0340E0324E0316E0316E03
328	00.0000.0000.0000.0000.0000.0000.0000.0000
329	46E0246E0270E0211E0311E0311E0311E0311E0311E0311E0370E0246E0246E02
330	42E0344E0384E0310E0410E0424E0424E0424E0410E0484E0353E0342E03
332	10E0413E0484E0484E0484E0435E0335E0335E0384E0484E0484E0410E04
333	93E0293E0214E0323E0323E0323E0321E0321E0321E0310E0370E0293E02
334	35E0349E0312E0423E0412E0421E0421E0421E0412E0494E0358E0337E03
335	32E0132E0149E0181E0181E0181E0181E0181E0181E0149E0132E0132E01
336	70E0470E0484E0484E0484E0484E0484E0484E04
337	32E0346E0312E0423E0412E0412E0412E0412E0412E0412E0412E0487E0356E0335E03
338	00.0000.0000.0000.0000.0000.0000.0000.0000
339	21E0221E0231E0253E0253E0253E0253E0253E0253E0253E0231E0221E0221E02
340	28E0328E0359E0310E0410E0413E0413E0413E0410E0459E0339E0328E03
341	28E0128E0142E0170E0170E0170E0170E0170E0170E0142E0128E0128E01
	14E0485E0384E0484E0484E0481E0281E0281E0284E0484E0484E0414E04
342	
343	70E0270E0293E0214E0314E0314E0314E0314E0314E0314E0370E0246E0270E02
344	44E0349E0373E0312E0410E0421E0422E0422E0411E0484E0351E0349E03
346	28E0325E0338E0364E0358E0358E0358E0358E0358E0358E0331E0323E0325E03
347	44E0346E0373E0312E0412E0412E0410E0410E0410E0480E0349E0346E03
349	46E0246E0270E0214E0314E0314E0314E0314E0314E0370E0246E0246E02
350	28E0330E0363E0310E0410E0412E0412E0412E0410E0463E0339E0328E03
351	12E0212E0224E0236E0236E0236E0236E0236E0236E0236E0224E0212E0212E02
352	15E0427E0484E0484E0484E0423E0323E0323E0384E0484E0484E0415E04
353	35E0235E0246E0270E0270E0270E0270E0270E0270E0235E0223E0235E02
354	42E0351E0311E0421E0411E0425E0421E0421E0412E0494E0358E0346E03
355	00.0000.0000.0000.0000.0000.0000.0000.0000
356	35E0335E0349E0381E0381E0375E0375E0375E0375E0342E0330E0332E03
357	42E0351E0311E0421E0411E0411E0411E0411E0412E0494E0360E0346E03
359	46E0246E0270E0293E0293E0293E0293E0293E0293E0293E0270E0246E0246E02
360	23E0325E0338E0375E0375E0381E0381E0381E0375E0338E0325E0323E03
362	23E0211E0366E0393E0329E0329E0329E0329E0329E0322E0328E0321E0323E02
363	35E0235E0246E0281E0281E0270E0270E0270E0270E0246E0223E0235E02
	16E0328E0394E0310E0470E0370E0370E0370E0393E0356E0332E0316E03
364	
365	21E0121E0131E0152E0152E0152E0152E0152E0152E0131E0121E0121E01
366	37E0335E0352E0381E0381E0381E0375E0375E0375E0345E0330E0332E03
367	14E0325E0387E0312E0464E0364E0358E0358E0381E0349E0330E0314E03
368	00.0200.0200.0300.0500.0500.0500.0500.05
369	46E0246E0270E0211E0311E0311E0311E0311E0311E0311E0370E0246E0246E02
370	37E0339E0391E0325E0425E0421E0421E0421E0425E0491E0360E0337E03
371	14E0214E0221E0235E0235E0235E0235E0235E0235E0235E0221E0214E0214E02
372	14E0426E0484E0484E0484E0417E0317E0317E0384E0484E0484E0414E04
373	35E0235E0246E0281E0270E0270E0270E0270E0270E0246E0223E0235E02
374	81E0391E0310E0421E0424E0431E0432E0432E0421E0410E0410E0488E03
375	14E0114E0121E0135E0135E0135E0135E0135E0135E0135E0121E0114E0114E01
376	11E0311E0317E0329E0329E0329E0329E0329E0329E0317E0311E0311E03
377	86E0395E0311E0422E0425E0425E0425E0425E0421E0411E0410E0493E03
378	00.0100.0100.0200.0300.0300.0300.0300.03
379	70E0270E0293E0214E0314E0314E0314E0314E0314E0314E0393E0270E0270E02
380	63E0365E0310E0433E0433E0442E0442E0442E0433E0410E0498E0363E03
	13E0480E0384E0484E0484E0449E0249E0249E0284E0484E0484E0413E04
382	
383	46E0246E0270E0211E0311E0311E0311E0311E0311E0370E0246E0246E02
384	12E0412E0426E0434E0436E0470E0470E0470E0437E0422E0414E0413E04
386	11E0393E0214E0323E0323E0323E0323E0323E0323E0314E0393E0293E02
389	46E0246E0270E0211E0311E0311E0311E0311E0311E0370E0246E0246E02
END I	10N-IFLW-CONC

END PERLND

*** <	[-PARI [LS >	Flag	IS			
*** x 11 END	386	CSNO RTOP 0 0 -PARM1	VRS VNN 0 0	RTLI 0		
	r-pari					
*** <	ILS >	LSUR	SLSUR		NSUR	RETSC
*** x	- x	(ft)				(in)
11	16	150.	0.1651		0.05	0.1
36	~ ~	200.	0.1024		0.05	0.1
61 91	66	200. 150.	0.1093 0.2531		0.05 0.05	0.1 0.1
111	96 116	150.	0.2531		0.05	0.1
121	126	200.	0.1324		0.05	0.1
156	100	200.	0.1308		0.05	0.1
161	166	200.	0.1074		0.05	0.1
176		200.	0.127		0.05	0.1
181	186	200.	0.1038		0.05	0.1
191	196	200.	0.1007		0.05	0.1
201	206	200.	0.1002		0.05	0.1
211	216	200.	0.1157		0.05	0.1
221	226	200.	0.1166		0.05	0.1
231 241	236 246	200. 200.	0.1061 0.1087		0.05 0.05	0.1 0.1
251	256	250.	0.0877		0.05	0.1
261	266	200.	0.1135		0.05	0.1
276		200.	0.1121		0.05	0.1
286		200.	0.1207		0.05	0.1
291	296	200.	0.1187		0.05	0.1
301	306	250.	0.0802		0.05	0.1
316		200.	0.1032		0.05	0.1
321	326	250.	0.0983		0.05	0.1
341	346	250.	0.0804		0.05	0.1
351	356	250.	0.0794		0.05	0.1
366 371	376	300. 300.	0.057 0.0694		0.05 0.05	0.1 0.1
386	570	300.	0.0617		0.05	0.1
	IWAT	-PARM2	0.001/		0.05	012
IWAT	r-pari	43				
	ILS >	PETMAX	PETMIN			
	- x	(deg F)	(deg F)			
11	386	40.	35.			
END	TWA.I.	-parm3				
TWA	C-STAT	FE1				
	ILS >	IWATER sta	te varia	bles ((inches)	
*** x	- x	RETS	SURS			
11	386	0.01	0.01			
END	IWAT	-STATE1				
NQUA						
*** < *** x						
11		1				
	NQUAI	LS				
QUAI	L-PROI	PS .				
		Identifi				
*** X		~ -) QTID		VPFW QS	
11 END		FECAL COLIFC) #	0	0	1 1
END	Δ0HΠ.	-PROPS				
QUAI	L-INPU	JT				
***			surface	and r	nonseasor	nal parameters
* * *			OTFW A			WSQOP
		qty/ac qty			qty/ac	in/hr
*** X				.day	0.0	0 2000
11 16		0.00E+000.00 1.02E+080.00				
ΤQ	-	L.UZETUOU.UU			.004700	0.2000

36	5.17E+060.00E+000.00E+000.00E+00	0.2500	
61	1.26E+080.00E+000.00E+000.00E+00	0.1000	
66	4.28E+060.00E+000.00E+000.00E+00	0.1250	
91	1.08E+080.00E+000.00E+000.00E+00	0.2000	
96	4.63E+060.00E+000.00E+000.00E+00	0.2500	
111	6.61E+070.00E+000.00E+000.00E+00	0.2000	
116	4.92E+060.00E+000.00E+000.00E+00	0.2500	
121	7.58E+070.00E+000.00E+000.00E+000	0.2000	
	2.79E+070.00E+000.00E+000.00E+000		
126		0.2500	
156	2.70E+080.00E+000.00E+000.00E+00 1.50E+080.00E+000.00E+000.00E+00	0.2500	
161		0.2000	
166	2.34E+060.00E+000.00E+000.00E+00	0.2500	
176	1.60E+080.00E+000.00E+000.00E+00	0.2500	
181	1.10E+080.00E+000.00E+000.00E+00	0.2000	
186	1.17E+080.00E+000.00E+000.00E+00	0.2500	
191	1.19E+080.00E+000.00E+000.00E+00	0.2000	
196	1.54E+080.00E+000.00E+000.00E+00	0.2500	
201	1.87E+070.00E+000.00E+000.00E+00	0.2000	
206	1.11E+080.00E+000.00E+000.00E+00	0.2500	
211	2.33E+060.00E+000.00E+000.00E+00	0.2000	
216	1.08E+080.00E+000.00E+000.00E+00	0.2500	
221	2.34E+060.00E+000.00E+000.00E+00	0.2000	
226	1.13E+080.00E+000.00E+000.00E+00	0.2500	
231	3.51E+070.00E+000.00E+000.00E+00	0.2000	
236	1.86E+080.00E+000.00E+000.00E+00	0.2500	
241	0.00E+000.00E+000.00E+000.00E+00	0.2000	
246	1.02E+080.00E+000.00E+000.00E+00	0.2500	
251	5.17E+060.00E+000.00E+000.00E+00	0.2000	
256	1.26E+080.00E+000.00E+000.00E+00	0.2500	
261	4.28E+060.00E+000.00E+000.00E+00	0.2000	
266	1.08E+080.00E+000.00E+000.00E+00	0.2500	
276	4.63E+060.00E+000.00E+000.00E+00	0.7500	
286	6.61E+070.00E+000.00E+000.00E+00	0.2500	
291	4.92E+060.00E+000.00E+000.00E+00	0.2000	
296	7.58E+070.00E+000.00E+000.00E+00	0.2500	
301	2.79E+070.00E+000.00E+000.00E+00	0.2000	
306	2.70E+080.00E+000.00E+000.00E+00	0.2500	
316	1.50E+080.00E+000.00E+000.00E+00	0.2500	
321	2.34E+060.00E+000.00E+000.00E+00	0.2000	
326	1.60E+080.00E+000.00E+000.00E+00	0.2500	
341	1.10E+080.00E+000.00E+000.00E+00	0.2000	
346	1.17E+080.00E+000.00E+000.00E+00	0.2500	
351	1.19E+080.00E+000.00E+000.00E+00	0.2000	
356	1.60E+080.00E+000.00E+000.00E+00	0.2500	
366	1.10E+080.00E+000.00E+000.00E+00	0.2500	
371	1.17E+080.00E+000.00E+000.00E+00	0.2000	
376	1.19E+080.00E+000.00E+000.00E+00	0.2500	
386	1.19E+080.00E+000.00E+000.00E+00	0.2500	
END	QUAL-INPUT		
	ACCUM		
*** <1	LS > Value at start of each month fo		
*** x-	- x JAN FEB MAR APR MAY JUN JUL	AUG SEP OCT	
11	30E0530E0530E0530E0530E0530E0530E	0530E0530E0530E	0
16	20E0720E0720E0720E0720E0720E0720E		
36	10E0710E0710E0710E0710E0710E0710E		
61	70E0570E0570E0570E0570E0570E0570E		
66	30E0730E0730E0730E0730E0730E0730E	0730E0730E0730E	0'
91	68E0468E0468E0468E0468E0468E0468E		
96	94E0691E0687E0685E0683E0681E0677E	0677E0677E0675E	0
111	70E0570E0570E0570E0570E0570E0570E	0570E0570E0570E	0
116	10E0710E0710E0710E0710E0710E0710E	0710E0710E0710E	0'
121	10E0510E0510E0510E0510E0510E0510E	0510E0510E0510E	0
126	10E0710E0710E0710E0710E0710E0710E0710E	0710E0710E0710E	0'

*** <il< th=""><th>S > Value at start of each month for accum rate of QUALOF (lb/ac.day)</th></il<>	S > Value at start of each month for accum rate of QUALOF (lb/ac.day)
*** x-	X JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
11	30E0530E0530E0530E0530E0530E0530E0530E0
16	20E0720E0720E0720E0720E0720E0720E0720E0
36	10E0710E0710E0710E0710E0710E0710E0710E0
61	70E0570E0570E0570E0570E0570E0570E0570E0
66	30E0730E0730E0730E0730E0730E0730E0730E0
91	68E0468E0468E0468E0468E0468E0468E0468E04
96	94E0691E0687E0685E0683E0681E0677E0677E0677E0675E0677E0685E06
111	70E0570E0570E0570E0570E0570E0570E0570E0
116	$10{\rm E}0710{\rm E}071$
121	10E0510E0510E0510E0510E0510E0510E0510E0
126	$10{\tt E0710E0710E0710E0710E0710E0710E0710E071$
156	71E0669E0666E0664E0662E0661E0657E0657E0657E0656E0657E0664E06
161	95E0495E0495E0495E0495E0495E0495E0495E04
166	20E0720E0710E0710E0710E0710E0710E0710E07
176	40E0740E0740E0730E0730E0730E0730E0730E07
181	70E0570E0570E0570E0570E0570E0570E0570E0
186	20E0720E0720E0720E0720E0720E0720E0720E0
191	85E0485E0485E0485E0485E0485E0485E0485E04

TMDL Development

196

190	
201	30E0530E0530E0530E0530E0530E0530E0530E0
206	80E0679E0678E0677E0676E0675E0673E0673E0673E0673E0673E0677E06
211	30E0530E0530E0530E0530E0530E0530E0530E0
216	54E0654E0654E0654E0654E0654E0654E0654E06
221	68E0468E0468E0468E0468E0468E0468E0468E04
226	82E0681E0681E0680E0680E0680E0679E0679E0679E0679E0679E0679E0680E06
231	78E0478E0478E0478E0478E0478E0478E0478E04
236	37E0637E0637E0636E0636E0636E0635E0635E0635E0635E0635
241	92E0492E0492E0492E0492E0492E0492E0492E04
246	76E0676E0675E0674E0674E0673E0672E0672E0672E0671E0672E0674E06
251	50E0550E0550E0550E0550E0550E0550E0550E0550E0550E0550E0550E0550E05
256	48E0647E0647E0646E0646E0645E0645E0645E0645E0644E0645E0646E06
261	63E0463E0463E0463E0463E0463E0463E0463E04
266	20E0720E0720E0720E0720E0720E0720E0720E0
276	60E0750E0750E0750E0750E0750E0740E0740E074
286	30E0730E0730E0730E0720E0720E0720E0720E07
291	78E0478E0478E0478E0478E0478E0478E0478E04
296	93E0692E0690E0688E0687E0686E0683E0683E0683E0682E0683E0688E06
301	45E0445E0445E0445E0445E0445E0445E0445E0
306	44E0644E0644E0644E0643E0643E0643E0643E06
316	40E0740E0740E0740E0740E0740E0730E0730E07
321	17E0417E0417E0417E0417E0417E0417E0417E04
326	58E0657E0655E0654E0653E0652E0650E0650E0650E0649E0650E0654E06
341	73E0473E0473E0473E0473E0473E0473E0473E04
346	84E0682E0679E0677E0675E0673E0670E0670E0670E0668E0670E0677E06
351	30E0530E0530E0530E0530E0530E0530E0530E0
356	10E0710E0710E0710E0798E0696E0692E0692E0692E0690E0692E0610E07
366	10E0710E0710E0710E0710E0710E0796E0696E0696E0693E0696E0610E07
371	40E0540E0540E0540E0540E0540E0540E0540E0
376	38E0638E0637E0636E0635E0635E0633E0633E0633E0633E0633
386	33E0632E0631E0630E0630E0629E0628E0628E0628E0628E0628E0628E0630E06
END MON	-ACCUM
MON-SQO	LIM
*** <tls< td=""><td>> Value at start of month for limiting storage of OUALOF (lb/ac)</td></tls<>	> Value at start of month for limiting storage of OUALOF (lb/ac)
-110	
*** x- x	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
*** x- x 11	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0618E0612E0612E06
*** x- x	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
*** x- x 11	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0618E0612E0612E06
*** x- x 11 16 36	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07
*** x- x 11 16 36 61	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0763E0642E0642E06
*** x- x 11 16 36 61 66	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0763E0642E0642E06 18E0818E0827E0845E0845E0845E0845E0845E0845E0827E0818E0818E08
*** x- x 11 16 36 61 66 91	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0763E0642E0642E06 18E0818E0827E0845E0845E0845E0845E0845E0845E0827E0818E0818E08 27E0527E0540E0568E0568E0568E0568E0568E0568E0568E0540E0527E0527E05
*** x- x 11 16 36 61 66	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0763E0642E0642E06 18E0818E0827E0845E0845E0845E0845E0845E0845E0827E0818E0818E08
*** x- x 11 16 36 61 66 91	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0763E0642E0642E06 18E0818E0827E0845E0845E0845E0845E0845E0845E0827E0818E0818E08 27E0527E0540E0568E0568E0568E0568E0568E0568E0568E0540E0527E0527E05
*** x- x 11 16 36 61 66 91 96 111	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E075
*** x- x 11 16 36 61 66 91 96 111 116	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
*** x- x 11 16 36 61 96 111 116 121	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 66 91 96 111 116 121 126	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 96 111 116 121	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 66 91 96 111 116 121 126	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161	JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166	JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E0680E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176	JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181	JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 96 111 116 121 126 156 161 166 176 181 186	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181	JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 96 111 116 121 126 156 161 166 176 181 186	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196	JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201	JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC12E0612E0618E0630E0630E0630E0630E0630E0630E0630E063
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0763E0642E0642E06 18E0818E0827E0845E0845E0845E0845E0845E0845E0827E0818E0818E08 27E0527E0540E0568E0568E0568E0568E0568E0568E0540E0527E0527E05 37E0736E0752E0785E0783E0781E0777E0777E0777E0735E0730E0734E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0763E0642E0642E06 60E0760E0790E0715E0815E0815E0815E0815E0815E0890E0760E0760E07 20E0520E0530E0550E0550E0550E0550E0550E05
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0763E0642E0642E06 18E0818E0827E0845E0845E0845E0845E0845E0845E0827E0818E0818E08 27E0527E0540E0568E0568E0568E0568E0568E0568E0540E0527E0527E05 37E0736E0752E0785E0783E0781E0777E0777E0777E0735E0730E0734E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0763E0642E0642E06 60E0760E0790E0715E0815E0815E0815E0815E0815E0890E0760E0760E07 20E0520E0530E0550E0550E0550E0550E0550E05
*** x- x 11 16 36 61 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
*** x- x 11 16 36 61 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0710E0710
*** x- x 11 16 36 61 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226 231	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226 231 236	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
*** x- x 11 16 36 61 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226 231	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226 231 236	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226 231 236 241 246	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0618E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0820E08
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226 231 236 241 246 251	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E0630E0630E0630E0630E0630E0630E0630E0612E0612E06 80E0780E0712E0820E0820E0820E0820E0820E0820E0812E0880E0780E07 20E0720E0730E0750E0750E0750E0750E0750E0750E0730E0720E0720E07 42E0642E0663E0610E0710E0710E0710E0710E0710E07310E042E0642E06 18E0818E0827E0845E0845E0845E0845E0845E0845E0827E0818E0818E08 27E0527E0540E0568E0568E0568E0568E0568E0568E05642E0540E0527E0527E05 37E0736E0752E0785E0783E0781E0777E0777E0777E0775E0750E0730E0734E07 42E0642E0663E0610E0710E0710E0710E0710E0710E0763E0642E0642E06 60E0760E0790E0715E0815E0815E0815E0815E0815E0809DE0760E0760E07 20E0520E0530E0550E0550E0550E0550E0550E05
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226 231 236 241 246 251 256	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0612E063E0630E0630E0630E0630E0630E0630E0630
*** x- x 11 16 36 61 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226 231 236 241 246 251 256 261	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E063E0630E0630E0630E0630E0630E0630E0630
*** x- x 11 16 36 61 66 91 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226 231 236 241 246 251 256	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0612E063E0630E0630E0630E0630E0630E0630E0630
*** x- x 11 16 36 61 96 111 116 121 126 156 161 166 176 181 186 191 196 201 206 211 216 221 226 231 236 241 246 251 256 261	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 12E0612E0618E063E0630E0630E0630E0630E0630E0630E0630

286	60E0760E0790E0715E0810E0810E0810E0810E0810E0810E0860E0740E0760E07
291	15E0515E0523E0539E0539E0539E0539E0539E0539E0539E0523E0515E0515E05
296	18E0718E0727E0744E0743E0743E0741E0741E0741E0724E0716E0717E07
301	90E0490E0413E0522E0522E0522E0522E0522E0522E0513E0590E0490E04
306	88E0688E0613E0722E0721E0721E0721E0721E0721E0712E0786E0688E06
316	80E0780E0712E0820E0820E0820E0815E0815E0815E0890E0760E0780E07
321	34E0434E0451E0485E0485E0485E0485E0485E0485E0485E0451E0434E0434E04
326	11E0711E0716E0727E0726E0726E0725E0725E0725E0714E0710E0710E07
341	14E0514E0521E0536E0536E0536E0536E0536E0536E0536E0521E0514E0514E05
346	16E0716E0723E0738E0737E0736E0735E0735E0735E0720E0714E0715E07
351	60E0560E0590E0515E0615E0615E0615E0615E0615E0690E0560E0560E05
356	20E0720E0730E0750E0749E0748E0746E0746E0746E0727E0718E0720E07
366	20E0720E0730E0750E0750E0750E0748E0748E0748E0727E0719E0720E07
371	80E0580E0512E0620E0620E0620E0620E0620E0620E0612E0680E0580E05
376	76E0676E0611E0718E0717E0717E0716E0716E0716E0799E0666E0672E06
386	66E0664E0693E0615E0715E0714E0714E0714E0714E0784E0656E0660E06
END MO	DN-SQOLIM

END IMPLND

UCI FILE USED FOR MODELING SOUTH RIVER

444						
	44_Improved Past		1 1	0 0	0 0	
445	44_Livestock Operati		1 1	0 0	0 0	
446	44_Residential		1 1	0 0	0 0	
447	44_Unimproved Pastur		1 1	0 0	0 0	
448	44_Water		1 1	0 0	0 0	
449	44_Woodland		1 1	0 0	0 0	
451	45_Commercial an		1 1	0 0	0 0	
452	45_Cropland		1 1	0 (0 0	
453	45_Farmstead		1 1		0 0	
454	45_Improved Past		1 1		0 0	
455	45_Livestock Operati		1 1		0 0	
456	45 Residential		1 1		0 0	
458	45_Water		1 1		0 0	
459	45_Woodland		1 1			
459			1 1			
	46_Commercial an		1 1			
462	46_Cropland					
464	46_Improved Past		1 1		0 0	
466	46_Residential		1 1		0 0	
468	46_Water		1 1		0 0	
469	46_Woodland		1 1		0 0	
471	47_Commercial an		1 1		0 0	
472	47_Cropland		1 1		0 0	
474	47_Improved Past		1 1		0 0	
476	47_Residential		1 1		0 0	
478	47_Water		1 1	0 0	0 0	
479	47_Woodland		1 1	0 0	0 0	
480	48_Livestock Access		1 1	0 0	0 0	
481	48_Commercial an		1 1	0 0	0 0	
482	48_Cropland		1 1	0 0	0 0	
484	48_Improved Past		1 1	0 0	0 0	
486	48_Residential		1 1	0 (0 0	
488	 48_Water		1 1	0 0	0 0	
489	48_Woodland		1 1		0 0	
	GEN-INFO			0		
PWAT	-PARM1					
*** <p< td=""><td></td><td></td><td></td><td></td><td></td><td></td></p<>						
1		ads				
***		Lags	VIEW VIEC		י טשיי דססמ	
300 x ***	- x CSNO RTOP UZFG VCS	VUZ VNN	VIFW VIRC			
390	- x CSNO RTOP UZFG VCS 489 0 1 1 1		VIFW VIRC 0 0		C HWT IRRG L 0 0	
390	- x CSNO RTOP UZFG VCS	VUZ VNN				
390 END	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1	VUZ VNN				
390 END PWAT	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 2-PARM2	VUZ VNN 0 0	0 0	1 1	L 0 0	лсырс
390 END PWAT *** <	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 C-PARM2 PLS> FOREST LZSN	VUZ VNN 0 0 INFILT	0 0 LSUR	1 : Slsuf	L O O	AGWRC
390 END PWAT *** < *** x	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 C-PARM2 PLS> FOREST LZSN - x (in)	VUZ VNN 0 0 INFILT (in/hr)	0 0 LSUR (ft)	1 : Slsur	L 0 0 R KVARY (1/in)	(1/day)
390 END PWAT *** < *** x 390	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 C-PARM2 PLS> FOREST LZSN - x (in) 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08	0 0 LSUR (ft) 1.5986	1 : SLSU	1 0 0 R KVARY (1/in) 5 0.	(1/day) 0.99
390 END PWAT *** < *** x 390 391	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 C-PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08	0 0 LSUR (ft) 1.5986 377.6964	1 : SLSUF 0.0119 0.044	L 0 0 R KVARY (1/in) 5 0. L 0.	(1/day) 0.99 0.99
390 END *** < 390 391 392	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 C-PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08	0 0 LSUR (ft) 1.5986 377.6964 732.7711	1 : SLSUF 0.011 0.044 0.047	L 0 0 R KVARY (1/in) 5 0. L 0. 9 0.	(1/day) 0.99 0.99 0.99
390 END *** < *** x 390 391 392 393	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 C-PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5. 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173	1	L 0 0 R KVARY (1/in) 5 0. 1 0. 9 0. 9 0.	(1/day) 0.99 0.99 0.99 0.99
390 END PWAT *** < 390 391 392 393 394	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 C-PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5. 1. 5. 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639	1	L 0 0 R KVARY (1/in) 5 0. 1 0. 9 0. 9 0. 7 0.	(1/day) 0.99 0.99 0.99 0.99 0.99
390 END *** < 390 391 392 393 394 395	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 -PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572	1	L 0 0 R KVARY (1/in) 5 0. 0 0. 9 0. 9 0. 9 0. 9 0. 9 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99
390 END *** < 390 391 392 393 394 395 396	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 -PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046	1	L 0 0 R KVARY (1/in) 5 0. 0 0. 9 0. 9 0. 7 0. 9 0. 7 0. 9 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99
390 END *** < 390 391 392 393 394 395 396 397	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 - x (in) - x (in) 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909	1	L O O R KVARY (1/in) 5 0. 0. 6 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 393 394 395 396 397 398	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 -PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398	1	L O O R KVARY (1/in) 5 0. 0. 6 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 - x (in) - x (in) 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909	1	L O O R KVARY (1/in) 5 0. 0. 6 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 9 0. 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 393 394 395 396 397 398	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 -PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398	1	L O O R KVARY (1/in) 5 0. 0. 6 0. 0. 9 0. 0. 9 0. 0. 9 0. 0. 7 0. 0. 2 0. 0. 2 0. 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END PWAT *** < 390 391 392 393 394 395 396 397 398 399	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 PLS> FOREST LZSN - x (in) 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568	1	L O O R KVARY (1/in) 5 0. 0. 6 0. 0. 7 0. 0. 7 0. 0. 7 0. 0. 5 0. 0. 6 0. 0. 7 0. 0. 5 0. 0. 6 0. 0. 6 0. 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917	1	L 0 0 R KVARY (1/in) 5 0. 1 0. 2 0. 7 0. 2 0. 5 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917	1	1 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 2 0. 5 0. 2 0. 5 0. 5 0. 5 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683	1	1 0 0 R KVARY (1/in) 5 0. 5 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 7 0. 7 0. 6 0. 7 0. 7 0. 7 0. 8 0. 9 0. 9 0. 9 0. 9 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994	1	L 0 0 R KVARY (1/in) 5 0. 5 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 8 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 -PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5. 1	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925	1	L 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 9 0. 7 0. 9 0. 7 0. 9 0. 7 0. 2 0. 5 0. 2 0. 5 0. 2 0. 5 0. 2 0. 3 0. 4 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 PLS> FOREST LZSN - x (in) 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231	1	L 0 0 R KVARY (1/in) 5 0. 4 0. 9	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 PLS> FOREST LZSN - x (in) 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231 437.5953	1	L 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 7 0. 7 0. 8 0. 9 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 PLS> FOREST LZSN - x (in) 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231 437.5953 7.4023	1	L 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 2 0. 2 0. 2 0. 2 0. 3 0. 4 0. 5 0. 4 0. 5 0. 6 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 7-PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231 437.5953 7.4023 585.0551	1	L 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 9 0. 7 0. 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. 3 0. 4 0. 5 0. 4 0. 5 0. 1 0. 7 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 7-PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231 437.5953 7.4023 585.0551 10.4403	1	L 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 7 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 1 0. 2 0. 3 0. 4 0. 5 0. 1 0. 5 0. 2 0. 3 0. 4 0. 5 0. 1 0. 7 0. 2 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 7-PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231 437.5953 7.4023 585.0551 10.4403 293.2618	1	I 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 8 0. 9 0. 9 0. 9 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 400 401 402	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 7-PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5.	VUZ VNN 0 0 INFILT (in/hr) 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.0	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231 437.5953 7.4023 585.0551 10.4403 293.2618 353.6551	1	I 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0. 7 0. 8 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0. 9 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 -PARM2 PLS> FOREST LZSN - x (in) 1. 5. 1. 5. 1	VUZ VNN 0 0 INFILT (in/hr) 0.08	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231 437.5953 7.4023 585.0551 10.4403 293.2618 353.6551 444.9258	1	L 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 9 0. 7 0. 9 0. 7 0. 2 0. 5 0. 2 0. 5 0. 2 0. 5 0. 2 0. 5 0. 6 0. 7 0. 8 0. 9 0. 3 0. 3 0. 3 0. 3 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 PLS> FOREST LZSN - x (in) 1. 5. 1.	VUZ VNN 0 0 INFILT (in/hr) 0.08	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231 437.5953 7.4023 585.0551 10.4403 293.2618 353.6551 444.9258 372.3126	1	L 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 9 0. 7 0. 9 0. 7 0. 9 0. 7 0. 2 0. 5 0. 2 0. 5 0. 2 0. 3 0. 5 0. 2 0. 3 0. 5 0. 2 0. 3 0. 7 0. 2 0. 3 0. 7 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 PLS> FOREST LZSN - x (in) 1. 5. 1.	VUZ VNN 0 0 INFILT (in/hr) 0.08	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231 437.5953 7.4023 585.0551 10.4403 285.0551 10.4403 285.6551 444.9258 372.3126 891.0225	1	L 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 9 0. 7 0. 9 0. 7 0. 9 0. 7 0. 9 0. 10 0. 11 0. 12 0. 12 0. 14 0. 15 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 10 0. 110 0. 120 0. 130 0. 141 0. 152 0. 153 0. 164 0. 17 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9
390 END *** < 390 391 392 393 394 395 396 397 398 399 400 401 402 403 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414	- x CSNO RTOP UZFG VCS 489 0 1 1 1 PWAT-PARM1 PLS> FOREST LZSN - x (in) 1. 5. 1.	VUZ VNN 0 0 INFILT (in/hr) 0.08	0 0 LSUR (ft) 1.5986 377.6964 732.7711 360.6173 468.2639 331.2572 572.9046 260.4909 66.8398 757.3568 1. 613.2917 658.3878 426.5683 439.3994 1127.925 592.4231 437.5953 7.4023 585.0551 10.4403 293.2618 353.6551 444.9258 372.3126	1	L 0 0 R KVARY (1/in) 5 0. 6 0. 7 0. 9 0. 7 0. 9 0. 7 0. 9 0. 7 0. 9 0. 10 0. 11 0. 12 0. 12 0. 14 0. 15 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 10 0. 11 0. 12 0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 10 0. 110 0. 120 0. 130 0. 141 0. 152 0. 153 0. 164 0. 17 0.	(1/day) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9

417	1.	5.	0.08	304.7604	0.0435	0.	0.99
418	1.	5.	0.08	2.8587	0.0124	0.	0.99
419	1.	5.	0.08	348.704	0.0564	0.	0.99
420	1.	5.	0.08	1.	0.0001	0.	0.99
421	1.	5.	0.08	503.5948	0.0402	0.	0.99
422	1.	5.	0.08	546.834	0.0372	0.	0.99
423	1.	5.	0.08	338.4655	0.0307	0.	0.99
424	1.	5.	0.08	333.1287	0.0363	0.	0.99
425	1.	5.	0.08	466.742	0.0001	0.	0.99
426	1.	5.	0.08	320.2951	0.0309	0.	0.99
427	1.	5.	0.08	309.452	0.0348	0.	0.99
428	1.	5.	0.08	6.2824	0.0169	0.	0.99
429	1.	5.	0.08	288.753	0.0291	0.	0.99
430	1.	5.	0.08	1.	0.0001	0.	0.99
431	1.	5.	0.08	261.99	0.0195	0.	0.99
432	1.	5.	0.08	240.157	0.0198	0.	0.99
433	1.	5.	0.08	464.0013	0.023	0.	0.99
434	1.	5.	0.08	338.7959	0.0295	0.	0.99
435	1.	5.	0.08	3.2312	0.0001	0.	0.99
436	1.	5.	0.08	532.9067	0.0222	0.	0.99
437	1.	5.	0.08	245.954	0.0262	0.	0.99
438	1.	5.	0.08	70.4617	0.0198	0.	0.99
439	1.	5.	0.08	351.5038	0.0916	0.	0.99
440	1.	5.	0.08	1.	0.0001	0.	0.99
441	1.	5.	0.08	119.6541	0.0301	0.	0.99
442	1.	5.	0.08	480.2531	0.0274	0.	0.99
						0.	
443	1.	5.	0.08	714.2587	0.0175	υ.	0.99
444	1.	5.	0.08	529.2068	0.0288	0.	0.99
445	1.	5.	0.08	479.0751	0.024	0.	0.99
446	1.	5.	0.08	631.9734	0.0257	0.	0.99
447	1.	5.	0.08	140.1579	0.0171	0.	0.99
448	1.	5.	0.08	13.9732	0.015	0.	0.99
449	1.	5.	0.08	426.6989	0.0755	0.	0.99
451	1.	5.	0.08	855.4063	0.0147	0.	0.99
452	1.	5.	0.08	417.3132	0.0133	0.	0.99
453	1.	5.	0.08	1924.729	0.0183	0.	0.99
454	1.	5.	0.08	695.6812	0.0213	0.	0.99
455	1.	5.	0.08	488.9999	0.0531	0.	0.99
456	1.	5.	0.08	925.817	0.0139	0.	0.99
458	1.	5.	0.08	283.7986	0.0167	0.	0.99
459	1.	5.	0.08	463.9038	0.0702	0.	0.99
461	1.	5.	0.08	769.8262	0.0211	0.	0.99
462	1.	5.	0.08	690.025	0.017	0.	0.99
464	1.	5.	0.08	610.4457	0.0206	0.	0.99
466	1.	5.	0.08	695.2671	0.0173	0.	0.99
	1.						
468		5.	0.08	212.4312	0.0157	0.	0.99
469	1.	5.	0.08	639.2217	0.052	0.	0.99
471	1.	5.	0.08	422.7086	0.0195	0.	0.99
	1.	5.		588.3601		0.	
472			0.08		0.0113		0.99
474	1.	5.	0.08	439.8508	0.0191	0.	0.99
476	1.	5.	0.08	621.8974	0.0143	0.	0.99
478	1.	5.	0.08	154.032	0.017	0.	0.99
479	1.						
		5.	0.08	600.7949	0.1243	0.	0.99
480	1.	5.	0.08	1454.522	0.0358	0.	0.99
481	1.	5.	0.08	392.1724	0.0495	0.	0.99
	1.						
482		5.	0.08	384.1265	0.0174	0.	0.99
484	1.	5.	0.08	466.6526	0.0265	0.	0.99
486	1.	5.	0.08	777.1786	0.0344	0.	0.99
488	1.	5.	0.08	120.5172	0.017	0.	0.99
489	1.	5.	0.08	662.0605	0.0632	0.	0.99
END PWA	T-PARM2						
D	D M2						
PWAT-PA							
*** < PLS	> PETMAX	PETMIN	INFEXP	INFILD	DEEPFR	BASETP	AGWETP
*** x -	x (deg F)	(deg F)					
			0	2.	0 01	0 040	0
390 48		35.	2.	۷.	0.01	0.048	0.
END PWA	T-PARM3						
PWAT-PA	RM4						
*** <pls< td=""><td></td><td>UZSN</td><td>NSUR</td><td>INTFW</td><td>IRC</td><td>LZETP</td><td></td></pls<>		UZSN	NSUR	INTFW	IRC	LZETP	
			10010	TTA TT. 44			
*** x -	x (in)	(in)			(1/day)		

390 48 END PW2	89 0.1 AT-PARM4	0.9	0.2	1.	0.7	0.	
*** x - 390 48	S> PWATER st x CEPS	ate variab SURS 0.01	les (in) UZS 0.3	IFWS 0.01			GWVS 0.01
*** x - 390 48	> Intercept x JAN FEB		MAY JUN	JUL AUG	SEP OCT	NOV DEC	
*** x -	> Upper zon x JAN FEB 89 0.1 0.1	e storage MAR APR 0.1 0.2	MAY JUN	JUL AUG	SEP OCT	NOV DEC	
*** x - 390 48	> Lower zon	MAR APR	MAY JUN	JUL AUG		NOV DEC	
NQUALS *** <pls *** x - 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430</pls 	>						

1

431	1						
432	1						
433	1						
434	1						
435 436	1 1						
430	1						
438	1						
439	1						
440	1						
441	1						
442	1						
443	1						
444	1						
445	1						
446	1						
447	1						
448	1						
449	1						
451	1						
452	1						
453	1						
454 455	1 1						
455	1						
458	1						
459	1						
461	1						
462	1						
464	1						
466	1						
468	1						
469	1						
471	1						
472	1						
474	1						
476	1						
478	1						
479	1						
480	1						
481 482	1						
482	1 1						
486	1						
488	1						
489	1						
END NQUAL							
~ -	-						
QUAL-PROP	S						
*** <pls></pls>	Identifier	s and F	lags				
*** x - x	QUALID			VPFW VPFS QSO	VQO QIFW	VIQC QAGW	VAQC
	ECAL COLIFC)	# 0	0 0 1	1 1	1 0) 0
END QUAL-	PROPS						
	-						
QUAL-INPU ***		auxfa-	a and ~.	onseasonal para	metera		
* * *			e and no POTFS	ACQOP SQOLIM	WSQOP	IOQC	AOQC
*** <pls></pls>	qty/ac qty			qty/ qty/ac		y/ft3 qty	
*** x - x	qey/ac qey	१ ८००० पुर		ac.day	III/III qu	y/105 q0y	/105
390	0.	0.	0.	0.0.000001	0.167	0.	0.
391	0.	0.	0.	0.0.000001	0.067	0.	0.
392	0.	0.	0.	0.0.000001	0.267	0.	0.
393	0.	0.	0.	0.0.000001	0.100	0.	0.
394	0.	0.	0.	0.0.000001	0.217	0.	0.
395	0.	0.	0.	0.0.00001	0.100	0.	0.
396	0.	0.	0.	0.0.00001	0.083	0.	0.
397	0.	0.	0.	0.0.000001	0.183	0.	0.
398	0.	0.	0.	0.0.000001	0.010	0.	0.
399	0.	0.	0.	0.0.000001	0.233	0.	0.
400	0.	0.	0.	0.0.000001	0.167	0.	0.
401	0.	0.	0.	0.0.000001	0.067	0.	0.

402	0.	0.	0.	0.0.000001	0.267	0.	0.
403	0.	0.	0.	0.0.000001	0.100	0.	0.
404	0.	0.	0.		0.217	0.	
				0.0.000001			0.
405	0.	0.	0.	0.0.000001	0.100	0.	0.
406	0.	0.	0.	0.0.000001	0.083	0.	0.
407	0.	0.	0.	0.0.000001	0.183	0.	0.
408	0.	0.	0.	0.0.000001	0.010	0.	0.
409	0.	0.	0.	0.0.00001	0.233	0.	0.
410	Ο.	Ο.	Ο.	0.0.000001	0.167	Ο.	0.
411	0.	0.	0.	0.0.000001	0.067	0.	Ο.
412	Ο.	0.	0.	0.0.000001	0.267	0.	0.
413	0.	0.	0.	0.0.000001	0.100	0.	0.
414	0.	0.	0.	0.0.000001	0.217	0.	0.
415	0.	0.	0.	0.0.000001	0.100	0.	0.
416	0.	0.	0.	0.0.000001	0.083	0.	0.
417	0.	0.	0.	0.0.000001	0.183	0.	0.
418	0.	0.	0.	0.0.000001	0.010	0.	0.
419	0.	0.	0.	0.0.000001	0.233	0.	0.
420	0.	0.	0.	0.0.000001	0.167	0.	0.
421	0.	0.	0.	0.0.000001	0.067	0.	0.
422	0.	0.	0.	0.0.00001	0.267	0.	0.
423	Ο.	Ο.	Ο.	0.0.000001	0.100	Ο.	0.
424	0.	0.	0.	0.0.000001	0.217	0.	Ο.
425	0.	0.	0.	0.0.000001	0.100	0.	0.
426	0.	0.	0.	0.0.000001	0.083	0.	0.
427	0.	0.	0.	0.0.000001	0.183	0.	0.
428	0.	0.	0.	0.0.000001	0.010	0.	0.
429	0.	0.	0.	0.0.000001	0.233	0.	0.
430			0.			0.	
	0.	0.		0.0.000001	0.167		0.
431	0.	0.	0.	0.0.000001	0.067	0.	0.
432	0.	0.	0.	0.0.000001	0.267	0.	0.
433	0.	0.	0.	0.0.000001	0.100	0.	0.
434	0.	0.	0.	0.0.000001	0.217	0.	0.
435	0.	0.	0.	0.0.00001	0.100	0.	0.
436	Ο.	0.	0.	0.0.000001	0.083	0.	0.
437	Ο.	Ο.	0.	0.0.000001	0.183	0.	0.
438	0.	0.	0.	0.0.000001	0.010	0.	0.
439	Ο.	Ο.	0.	0.0.000001	0.233	0.	0.
440	0.	0.	0.	0.0.000001	0.167	0.	0.
441	0.	0.	0.	0.0.000001	0.067	0.	0.
442	0.	0.	0.	0.0.000001	0.267	0.	0.
443	0.	0.	0.	0.0.000001		0.	0.
					0.100		
444	0.	0.	0.	0.0.000001	0.217	0.	0.
445	0.	0.	0.	0.0.000001	0.100	0.	0.
446	0.	0.	0.	0.0.000001	0.083	0.	0.
447	0.	0.	0.	0.0.000001	0.183	0.	0.
448	0.	0.	0.	0.0.000001	0.010	0.	0.
449	0.	0.	0.	0.0.00001	0.233	0.	0.
451	0.	0.	0.	0.0.00001	0.067	0.	Ο.
452	Ο.	Ο.	0.	0.0.000001	0.267	0.	0.
453	0.	0.	0.	0.0.000001	0.100	0.	Ο.
454	0.	0.	0.	0.0.000001	0.217	0.	0.
455	0.	0.	0.	0.0.000001	0.100	0.	0.
456	0.	0.	0.	0.0.000001	0.083	0.	0.
458	0.	0.	0.	0.0.000001	0.010	0.	0.
459	0.	0.	0.	0.0.000001		0.	
					0.233		0.
461	0.	0.	0.	0.0.000001	0.067	0.	0.
462	0.	0.	0.	0.0.000001	0.267	0.	0.
464	0.	0.	0.	0.0.000001	0.217	0.	0.
466	0.	0.	0.	0.0.000001	0.083	0.	0.
468	0.	0.	0.	0.0.00001	0.010	0.	0.
469	0.	0.	0.	0.0.000001	0.233	0.	0.
471	0.	0.	0.	0.0.000001	0.067	0.	0.
472	0.	0.	0.	0.0.000001	0.267	0.	0.
474	0.	0.	0.	0.0.000001	0.217	0.	0.
476	0.	0.	0.	0.0.000001	0.083	0.	0.
478	0.	0.	0.	0.0.000001	0.010	0.	0.
	0.	0.	0.	0.0.000001		0.	0.
479					0.233		
480	0.	0.	0.	0.0.000001	0.167	0.	0.
481	0.	0.	0.	0.0.000001	0.067	0.	0.
482	0.	0.	0.	0.0.000001	0.267	0.	0.

404	0	0	0	0 0 000	0.01 0.01	1 0	0
484	0.	0.	0.	0.0.000			0.
486	0.	0.	0.	0.0.000			0.
488	0.	0.	0.	0.0.000			0.
489	0.	0.	0.	0.0.000	0.23	30.	0.
END Ç	QUAL-INPUT						
MON-A	CCIIM						
*** <pi< td=""><td></td><td>start of</td><td>f each mo</td><td>nth for acc</td><td>cum rate of</td><td>QUALOF (1)</td><td>o/ac.dav)</td></pi<>		start of	f each mo	nth for acc	cum rate of	QUALOF (1)	o/ac.dav)
*** x-			MAY JU		G SEP OC		,, ,
390	90E0710E081)7
391	32E0632E063						
392	70E0610E074						
393	20E0720E072						
394	10E0813E081						
395	12E0612E061	2E0612E0)612E0612	E0612E0612	E0612E0612B	E0612E0612E	06
396	10E0890E079	0E0790E0)790E0780	E0780E07801	E0780E0780B	CO780E0790E)7
397	10E0813E081	6E0815E0	0813E0812	E0812E0812	E0813E0813	E0812E0810E	08
398	40E0140E014	0E0140E0	0140E0140	E0140E0140	E0140E0140	C0140E0140E	01
399	10E0710E071	0E0710E0	0710E0710	E0710E0710	E0710E0710	CO710E0710E	07
400	10E0811E081	2E0813E0	0813E0814	E0814E08141	E0813E0812	E0811E0810E	08
401	35E0635E063	5E0635E(0635E0635	E0635E06351	E0635E06351	C0635E0635E	06
402	10E0720E076	0E0750E0	0720E0720	E0720E07201	E0730E0730	C0730E0710E	07
403	30E0730E073	0E0730E0	0720E0720	E0720E07201	E0720E07201	C0720E0730E	07
404	80E0711E081	4E0813E0	0810E0810	E0810E0810	E0811E0811	E0810E0880E)7
405	00.0000.000	0.0000.0	0000.0000	.0000.0000	.0000.0000	.0000.0000.0	00
406	10E0810E081	0E0890E0	0790E0790	E0780E07801	E0780E07801	CO780E0790E	07
407	10E0812E081	6E0815E0	0812E0812	E0812E0812	E0813E0813	E0812E0810E	08
408	20E0120E012	0E0120E0	0120E0120	E0120E0120B	E0120E0120B	E0120E0120E	01
409	20E0720E072	0E0720E0)720E0720	E0720E07201	E0720E07201	C0720E0720E)7
410	70E0780E078	0E0780E0)780E0780	E0780E07801	E0780E07801	C0780E0770E)7
411	64E0664E066	4E0664E(0664E0664	E0664E06641	E0664E06641	E0664E0664E	06
412	30E0730E073	0E0730E0	0730E0730	E0730E07301	E0730E07301	E0730E0730E)7
413	40E0740E073	0E0730E0	0730E0730	E0730E07301	E0730E07301	E0730E0730E)7
414	40E0750E075	0E0750E()750E0750	E0750E0750B	E0750E0750B	E0740E0740E)7
415	60E0560E056	0E0560E(D560E0560	E0560E05601	E0560E05601	E0560E0560E)5
416	70E0770E077	OE0770E(D760E0760	E0760E07601	E0760E07601	E0760E0770E	07
417	40E0740E074	0E0740E()740E0740	E0740E07401	E0740E07401	E0740E0740E)7
418	80E0180E018	0E0180E0	D180E0180	E0180E01801	E0180E0180B	E0180E0180E	01
419	20E0720E072	0E0720E0)720E0720	E0720E07201	E0720E07201	E0720E0720E)7
420	10E0811E081						
421	10E0710E071	0E0710E0)710E0710	E0710E07101	E0710E0710B	E0710E0710E)7
422	10E0740E071						
423	30E0730E073						
424	11E0815E082						
425	31E0631E063						
426	11E0810E081						
427	90E0714E082	5E0822E(1813E0813	E0813E08131	E0816E08161	208152089020	17

423	30E0730E0730E0730E0730E0730E0730E0730E0
424	11E0815E0826E0824E0815E0815E0815E0815E0818E0818E0816E0811E08
425	31E0631E0631E0631E0631E0631E0631E0631E06
426	11E0810E0810E0810E0890E0790E0790E0790E0790E0790E0790E079
427	90E0714E0825E0822E0813E0813E0813E0813E0816E0816E0815E0890E07
428	90E0190E0190E0190E0190E0190E0190E0190E0
429	20E0720E0720E0720E0720E0720E0720E0720E0
430	11E0811E0816E0820E0820E0825E0825E0825E0820E0816E0816E0811E08
431	20E0720E0720E0720E0720E0720E0720E0720E0
432	10E0910E0913.0013.0013.0020E0720E0720E0740E0913.0013.0013E10
433	20E0720E0720E0720E0720E0720E0720E0720E0
434	24E0825E0826E0827E0828E0851E0851E0851E0830E0830E0828E0827E08
435	80E0680E0680E0680E0680E0680E0680E0680E0
436	17E0817E0816E0816E0815E0815E0815E0815E0815E0815E0814E0815E0816E08
437	25E0826E0827E0828E0829E0829E0830E0830E0831E0831E0829E0828E08
438	30E0130E0130E0130E0130E0130E0130E0130E0
439	20E0720E0720E0720E0720E0720E0720E0720E0
440	60E0760E0760E0760E0760E0760E0760E0760E0
441	20E0720E0720E0720E0720E0720E0720E0720E0
442	20E0720E0720E0720E0720E0720E0720E0720E0
443	10E0710E0710E0710E0710E0710E0710E0710E0
444	20E0720E0720E0720E0720E0720E0720E0720E0
445	63E0663E0663E0663E0663E0663E0663E0663E0
446	11E0811E0811E0811E0810E0810E0810E0810E0
447	30E0730E0730E0730E0730E0730E0730E0730E0
448	40E0140E0140E0140E0140E0140E0140E0140E0
449	20E0720E0720E0720E0720E0720E0720E0720E0
451	48900.0000.0000.0000.0000.0000.0000.0000
END	MON-ACCUM

* x-	
390	54E0860E0810E0918E0918E0930E0930E0930E0918E0910E0966E0854E08 19E0719E0719E0738E0738E0738E0738E0738E0738E0738E0719E0719E0719E07
391 392	21E0760E0736E0860E0815E0815E0815E0815E0836E0838E0738E0738E0738E0738E0738E0738E0738
393	12E0818E0824E0836E0836E0836E0830E0830E0830E0818E0812E0818E08
393 394	60E0878E0814E0927E0911E0921E0921E0921E0927E0911E0972E0860E08
395	72E0672E0672E0614E0714E0714E0714E0714E0714E0714E0772E0672E0672E06
396	60E0854E0881E0810E0910E0996E0896E0896E0896E0872E0848E0854E08
397	60E0878E0814E0927E0915E0914E0914E0914E0911E0911E0972E0860E08
398	24E0224E0236E0260E0260E0260E0260E0260E0260E0260
399	60E0760E0760E0715E0815E0815E0815E0815E0815E0860E0760E0760E07
400	60E0866E0810E0915E0915E0925E0925E0925E0915E0910E0966E0860E08
401	21E0721E0721E0742E0742E0742E0742E0742E0742E0742E0721E0721E0721E07
402	30E0712E0854E0875E0830E0830E0830E0830E0854E0827E0818E0830E07
403	18E0827E0836E0854E0836E0836E0830E0830E0830E0818E0812E0827E08
404	48E0866E0812E0923E0990E0818E0918E0918E0923E0999E0860E0848E08
405	00.0000.0000.0000.0000.0000.0000.0000.0000
406	60E0860E0890E0810E0910E0910E0996E0896E0896E0872E0848E0854E08
407	60E0872E0814E0927E0914E0914E0914E0914E0911E0911E0972E0860E08
408	12E0212E0218E0230E0230E0230E0230E0230E0230E0230E0218E0212E0212E02
409	12E0812E0812E0830E0830E0830E0830E0830E0830E0830E0812E0812E0812E08
410	42E0848E0872E0896E0896E0814E0914E0914E0996E0872E0848E0842E08
411	38E0738E0738E0776E0776E0776E0776E0776E0776E0738E0738E0738E07
412	90E0718E0827E0845E0845E0845E0845E0845E0845E0854E0827E0818E0890E07
413	$24E0836E0836E0854E0854E0854E0845E0845E0845E0845E0827E0818E0827E08\\ 24E0830E0845E0890E0845E0890E0890E0890E0890E0810E0945E0824E0824E08$
414 415	36E0636E0636E0672E0672E0672E0672E0672E0672E0672E0636E0636E0636E06
415	42E0842E0863E0884E0872E0872E0872E0872E0872E0872E0854E0836E0836E0836E0836E0836E0836E0836E0836
417	24E0824E0836E0872E0848E0848E0848E0848E0836E0836E0824E0824E08
418	48E0248E0272E0212E0312E0312E0312E0312E0312E0312E0372E0248E0248E02
419	12E0812E0812E0830E0830E0830E0830E0830E0830E0830E083
420	10E0911E0918E0928E0928E0945E0945E0945E0928E0918E0911E0910E09
421	10E0810E0810E0820E0820E0820E0820E0820E08
422	50E0740E0824E0932E0910E0910E0910E0910E0921E0910E0970E0850E07
423	30E0845E0860E0890E0890E0890E0875E0875E0875E0845E0830E0845E08
424	11E0915E0939E0972E0922E0945E0945E0945E0963E0927E0916E0911E09
425	31E0731E0731E0762E0762E0762E0762E0762E0762E0762E0731E0731E0731E07
426	11E0910E0915E0920E0918E0918E0918E0918E0918E0913E0990E0810E09
427	90E0814E0937E0966E0926E0926E0926E0926E0924E0924E0915E0990E08
428	90E0290E0213E0322E0322E0322E0322E0322E0322E0313E0390E0290E02
429	20E0820E0820E0850E0850E0850E0850E0850E08
430	11E0911E0924E0940E0940E0975E0975E0975E0940E0924E0916E0911E09
431	20E0820E0820E0840E0840E0840E0840E0840E08
432	50E0910E1019E0132E0132E0150E0850E0850E0812E1119E0113E0165E10
433	20E0830E0840E0860E0860E0860E0850E0850E0850E0815E0820E0830E08
434	24E0925E0939E0981E0942E0915E1015E1015E1010E1045E0928E0927E09
435 436	80E0780E0780E0716E0816E0816E0816E0816E0816E0880E0780E0780E07 17E0917E0924E0932E0930E0930E0930E0930E0930E0921E0915E0916E09
	17E0917E0924E0932E0930E0930E0930E0930E0930E0921E0915E0916E09 25E0926E0940E0984E0958E0958E0960E0960E0946E0946E0929E0928E09
437 438	30E0230E0245E0275E0275E0275E0275E0275E0275E0275E0245E0230E0230E0230E02
430 439	20E0230E0243E0273E0273E0273E0273E0273E0273E0243E0230E0230E0230E02
440	60E0860E0890E0812E0912E0918E0918E0918E0912E0990E0860E0860E08
441	20E0820E0820E0840E0840E0840E0840E0840E08
442	10E0820E0830E0850E0850E0850E0850E0850E0850E0860E0830E0820E0810E08
443	10E0815E0820E0830E0830E0830E0825E0825E0825E0815E0810E0815E08
444	20E0820E0830E0860E0830E0860E0860E0860E0870E0830E0820E0820E08
445	63E0763E0763E0712E0812E0812E0812E0812E0812E0863E0763E0763E07
446	11E0911E0916E0922E0920E0920E0920E0920E0920E0920E0915E0910E0911E09
447	30E0830E0845E0890E0860E0860E0860E0860E0860E0845E0845E0830E0830E08
448	40E0240E0260E0210E0310E0310E0310E0310E0310E0310E0360E0240E0240E02
449	20E0820E0820E0850E0850E0850E0850E0850E08
451	48900.0000.0000.0000.0000.0000.0000.0000
451	

391	22E0322E0322E0344E0344E0344E0344E0344E03
392	24E0370E0342E0470E0417E0417E0417E0417E0442E0421E0414E0424E03
393	14E0421E0428E0442E0442E0442E0435E0435E0435E0421E0414E0421E04
394	70E0484E0484E0484E0484E0484E0484E0484E04
395	84E0284E0284E0216E0316E0316E0316E0316E0316E0384E0284E0284E02
396	70E0463E0484E0484E0484E0484E0484E0484E0484E048
397	70E0484E0484E0484E0484E0484E0484E0484E04
398	00.2800.2800.4200.7000.7000.7000.7000.7000.7000.4200.2800.28
	70E0370E0370E0317E0417E0417E0417E0417E0417E0417E0470E0370E0370E03
399	
400	70E0477E0484E0484E0484E0484E0484E0484E04
401	24E0324E0324E0349E0349E0349E0349E0349E0349E0349E0324E0324E0324E03
402	35E0314E0463E0484E0435E0435E0435E0435E0463E0431E0421E0435E03
403	21E0431E0442E0463E0442E0442E0435E0435E0435E0421E0414E0431E04
404	56E0477E0484E0484E0484E0484E0484E0484E0484
405	00.0000.0000.0000.0000.0000.0000.0000.0000
406	70E0470E0484E0484E0484E0484E0484E0484E04
407	70E0484E0484E0484E0484E0484E0484E0484E04
408	00.1400.1400.2100.3500.3500.3500.3500.3500.3500.2100.1400.14
409	$14\pm0414\pm0414\pm0435\pm0435\pm0435\pm0435\pm0435\pm0435\pm0435\pm0414\pm0414\pm0414\pm0414\pm0414\pm0414\pm0414\pm041$
410	49E0456E0484E0484E0484E0484E0484E0484E0484E048
411	44E0344E0344E0389E0389E0389E0389E0389E0389E0389E0384E0344E0344E03
412	10E0421E0431E0452E0452E0452E0452E0452E0463E0431E0421E0410E04
413	28E0442E0442E0463E0463E0463E0452E0452E0452E0431E0421E0431E04
414	28E0435E0452E0484E0452E0484E0484E0484E0484E0484E0452E0428E0428E04
415	42E0242E0242E0284E0284E0284E0284E0284E02
416	49E0449E0473E0484E0484E0484E0484E0484E0484E0484E0463E0442E0449E04
417	28E0428E0442E0484E0456E0456E0456E0456E0442E0442E0428E0428E04
418	00.5600.5600.8401.4001.4001.4001.4001.4001.4000.8400.5600.56
419	14E0414E0414E0435E0435E0435E0435E0435E0435E0435E0414E0414E0414E04
420	84E0484E0484E0484E0484E0484E0484E0484E0
421	11E0411E0411E0423E0423E0423E0423E0423E0423E0423E0421E0411E0411E04
422	58E0346E0484E0484E0484E0484E0484E0484E0484E04
423	35E0452E0470E0484E0484E0484E0484E0484E0484E0484
424	84E0484E0484E0484E0484E0484E0484E0484E0
425	36E0336E0336E0372E0372E0372E0372E0372E0372E0372E0336E0336E0336E0336E03
425	
420	84E0484E0484E0484E0484E0484E0484E0484E0
	84E0484E0484E0484E0484E0484E0484E0484E0
428	01.0501.0501.5802.6302.6302.6302.6302.6302.6301.5801.0501.05
429	23E0423E0423E0458E0458E0458E0458E0458E0458E0458E0423E0423E0423E04
430	84E0484E0484E0484E0484E0484E0484E0484E0
431	23E0423E0423E0446E0446E0446E0446E0446E0446E0446E0423E0423E0423E04
432	84E0484E0400.0200.0400.0458E0458E0458E0484E0400.0200.0284E04
433	23E0435E0446E0470E0470E0470E0458E0458E0458E0417E0423E0435E04
434	84E0484E0484E0484E0484E0484E0484E0484E0
435	93E0393E0393E0318E0418E0418E0418E0418E0418E0493E0393E0393E03
436	84E0484E0484E0484E0484E0484E0484E0484E0
437	84E0484E0484E0484E0484E0484E0484E0484E0
438	00.3500.3500.5300.8800.8800.8800.8800.88
439	23E0423E0423E0458E0458E0458E0458E0458E0458E0458E0423E0423E0423E0423E04
440	70E0470E0484E0484E0484E0484E0484E0484E04
441	23E0423E0423E0446E0446E0446E0446E0446E0446E0446E0423E0423E0423E04
442	11E0423E0435E0458E0458E0458E0458E0458E0470E0435E0423E0411E04
443	11E0417E0423E0435E0435E0435E0429E0429E0429E0417E0411E0417E04
444	23E0423E0435E0470E0435E0470E0470E0470E0481E0435E0423E0423E04
445	73E0373E0373E0314E0414E0414E0414E0414E0414E0414E0473E0373E0373E03
446	84E0484E0484E0484E0484E0484E0484E0484E0
447	35E0435E0452E0484E0470E0470E0470E0470E0452E0452E0435E0435E04
448	00.4700.4700.7001.1701.1701.1701.1701.17
449	23E0423E0423E0458E0458E0458E0458E0458E0458E0458E0423E0423E0423E0423E04
451	48900.0000.0000.0000.0000.0000.0000.0000
	MON-IFLW-CONC

END PERLND

IMPLND ACTIVITY *** <ILS > Active Sections *** x - x ATMP SNOW IWAT SLD IWG IQAL 391 486 0 0 1 0 0 1 END ACTIVITY

0

0

0

0

0

0

0

PRINT-INFO *** <ILS > ******* Print-flags ******* PIVL PYR *** x - x ATMP SNOW IWAT SLD IWG IQAL ******** 391 486 4 4 4 4 4 4 1 9 END PRINT-INFO GEN-INFO * * * Name Unit-systems Printer BinaryOut *** <ILS > t-series Engl Metr Engl Metr *** x - x in out 391 39_Commercial and Se 396 39_Residential
 1
 1
 0
 0

 1
 1
 0
 0

 1
 1
 0
 0

 1
 1
 0
 0

 1
 1
 0
 0
 0 0 0 40_Commercial and Se 40_Residential 401 0 406 0 41_Commercial and Se 1 1 0 0 411 0 0 416 41_Residential 1 1 0 0 1 1 0 0 1 1 0 0 0 0 421 42_Commercial and Se 0 42_Residential 0 0 426 43_Commercial and Se 0 431 1 1 0 0 0 43_Residential 44_Commercial an 1 1 1 0 0 1 0 0 436 0 441 0 446 44_Residential 1 1 0 0 0 0 45_Commercial an 1 1 0 0 0 1 1 0 0 0 0 451 456 45_Residential 1 1 0 0 0461 0 46_Commercial an 466 46_Residential 471 47_Commercial an
476 47_Residential
481 48_Commercial an
486 48_Residential 1 1 0 0 0 0 END GEN-INFO IWAT-PARM1 *** <ILS > Flags *** x - x CSNO RTOP VRS VNN RTLI 391 486 0 0 0 0 0 END IWAT-PARM1 IWAT-PARM2 LSUR SLSUR NSUR RETSC *** <ILS > *** x - x (in) (ft) 200. 0.1162 0.05 200. 0.1161 0.05 250. 0.0847 0.05 250. 0.0845 0.05 200. 0.1384 0.05 (ft) 200. 0.1 0.1 391 396 401 0.1 0.1 0.1 406 411 200. 0.1383 0.05 416 0.1 421 426 300.0.0627300.0.0628 0.05 0.1 0.05 0.05 0.05 0.05 150. 0.1736 0.1 431 150. 0.1735 200. 0.1282 200. 0.1281 436 0.1 0.1 0.1 441 446 200. 0.1163 451 0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05
 200.
 0.1164

 250.
 0.0986

 250.
 0.0987
 0.1 0.1 456 461 0.1 466 471 150. 0.2381 0.1 150. 0.2383 200. 0.1357 0.1 0.1 476 481 486 200. 0.1356 0.05 0.1 END IWAT-PARM2 IWAT-PARM3 PETMIN *** <ILS > PETMAX *** x - x (deg F) (deg F) 391 486 40. 35. 35. END IWAT-PARM3 IWAT-STATE1 *** <ILS > IWATER state variables (inches)

*** x - x 391 486 END IWAT-	RETS 0.01 STATE1	SURS 0.01
NQUALS *** <ils> *** x - xN 391 396 401 406 411 416 421 426 431 426 431 436 441 446 451 456 461 466 471 476 481 486 END NQUAL</ils>	QUAL 1 1 1 1 1 1 1 1 1 1 1 1 1	
QUAL-PROP *** <ils> *** x - x 391 486F END QUAL-</ils>	Identifier QUALID ECAL COLIFO	s and Flags QTID QSD VPFW QSO VQO # 0 0 1 1
QUAL-INPU	Т	
* * *		urface and nonseasonal parameters
***		FW ACQOP SQOLIM WSQOP
*** <ils> *** x - x</ils>	qty/ac qty/t	on qty/ qty/ac in/hr ac.day
391	0.	0. 0.0.000001 0.8
396		0. 0.0.000001 1
401	0.	0. 0.0.000001 0.8
406	0.	0. 0.0.000001 1
411		0. 0.0.000001 0.8
416		0. 0.0.000001 1
421 426		0. 0.0.000001 0.8 0. 0.0.000001 1
431		0. 0.0.000001 0.8
436	0.	0. 0.0.000001 1
441	0.	0. 0.0.000001 0.8
446	0.	0. 0.0.000001 1
451	0.	0. 0.0.000001 0.8
456	0.	0. 0.0.000001 1
461	0.	0. 0.0.000001 0.8
466 471	0. 0.	0. 0.0.000001 1 0. 0.0.000001 0.8
471	0.	0. 0.0.000001 1
481	0.	0. 0.0.000001 0.8
486	0.	0. 0.0.000001 1
END QUAL-	INPUT	

MON-ACCUM

421 426 431 436 441 446		76E0 11E0 10E0 11E0 82E0	675E(611E(710E(611E(681E(0671E 0611E 0710E 0611E 0678E	0670E(0611E(0710E(0611E(0676E()668E0)611E0)710E0)611E0)675E0	667E0 611E0 710E0 611E0 673E0	663E0 611E0 710E0 611E0 670E0	663E0 611E0 710E0 611E0	663E0 611E0 710E0 611E0 670E0	570E0 662E0 611E0 710E0 611E0 669E0	663E0 611E0 710E0 611E0 670E0	670E0 611E0 710E0 611E0 676E0	6 6 7 6 6
451 END		-ACCU		5000.	0000.0	0000.0	1000.0	000.0	1000.0	1000.0	000.0	000.0	000.0	0
	-SQO		111											
*** <									9		9	~	•	b/ac)
*** X	- x	JAN	FEB	MAR		MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
391		12E0	612E(0612E	0612E()612E0	612E0	612E0	612E0	612E0	612E0	612E0	612E0	б
396		41E0	740E()739E	0738E()737E0	736E0	734E0	734E0	734E0	734E0	734E0	738E0	7
401		12E0	612E(0612E	0612E0)612E0	612E0	612E0	612EC	612E0	612E0	612E0	612E0	6
406		44E0	743E()741E	0740E()739E0	737E0	735E0	735EC	735E0	734E0	735E0	740E0	7
411		24E0	624E()624E	0624E()624E0	624E0	624E0	624E0	624E0	624E0	624E0	624E0	б
416		30E0	730E0)728E	0728E0)727E0	727E0	725E0	725E0	725E0	725E0	725E0	728E0	7
421		70E0	670E0)670E	0670E()670E0	670E0	670E0	670E0	670E0	670E0	670E0	670E0	б
426		76E0	775E()771E	0770E)768E0	767E0	763E0	763E0	763E0	762E0	763E0	770E0	7
431		11E0	711E()711E	0711E()711E0	711E0	711E0	711EC	711E0	711E0	711E0	711E0	7
436		10E0	810E)810E	0810E)810E0	810E0	810E0	810EC	810E0	810E0	810E0	810E0	8
441		11E0	711E()711E	0711E)711E0	711E0	711E0	711EC	711E0	711E0	711E0	711E0	7
446		82E0	781E)778E	0776E()775E0	773E0	770E0	770E0	770E0	769E0	770E0	776E0	7
451	48				• • • • = •						000.0			
END		-SQOL												•

END IMPLND

APPENDIX G

FUTURE HUMAN POPULATION GROWTH TMDL

Impairment		WLA	LA	MOS	TMDL
		(cfu/year)	(cfu/year)		(cfu/year)
Upper Middle River		4.27E+10	3.33E+13		3.34E+13
	VA0060917	2.52E+10			
	VAG401064	8.70E+09			
	VAG401359	8.70E+09			
Moffett Creek		0.0	5.39E+12		5.39E+12
		0.0			
Lewis Creek		1.74E+10	6.91E+12		6.93E+12
	VAG401072	8.70E+09			
	VAG401882	8.70E+09			
Polecat Draft		0.0	2.56E+12		2.56E+12
		0.0		t	
Lower Middle River		6.11E+13	6.53E+13	Implicit	1.26E+14
	VA0002194	1.65E+11		ld	
	VA0022322	1.31E+12		Im	
	VA0062481	3.05E+11			
	VA0064793	5.92E+13			
	VA0084212	2.61E+10			
	VA0089419	3.05E+10			
	VAG401312	8.70E+09			
	VAG401498	8.70E+09			
	VAG401664	8.70E+09			
	VAG401915	8.70E+09			
South River		5.31E+11	2.04E+13		2.09E+13
	VA0023400	5.22E+11			
	VAG401981	8.70E+09			

Table G.1Average annual loads (cfu/year) modeled after TMDL allocation in
the Upper Middle River, Moffett Creek, Lewis Creek, Polecat Draft,
and Lower Middle River watersheds with permitted point source
loads increased five times.